
Chapter 1

What Happened to my Algebra and
why is it Linear?

This class will likely be very different from the majority of math classes you have taken in your academic
career. In your previous classes, there was likely an emphasis on computations and less so on theory/concepts;
in this class we will put equal emphasis on computations and theory/concepts. That is to say: you will be
expected to ably compute examples while, at the same time, demonstrate a working knowledge of the theory.
I do not mention this to alarm or frighten you. Rather, it is important for you to know that this class may
diverge from your usual notion of a math class, and that can you persevere in the face of difficulty. With
that being said, you might be wondering:

Question: Why Take this class?

Answer: The cop-out answer is that this depends on what you want to use linear algebra for (I suggest
you think about this as the class progresses), but as this may be your first introduction to the subject, it
might be hard to answer this right off the bat. In light of this, I will do my best to provide an answer that will
encompass as many backgrounds as possible. You should study linear algebra because it is useful in many
different areas of study, and, most importantly, you will strengthen your problem solving abilities and being
comfortable with and overcoming mathematical/intellectual hurdles. I am here to help you when things get
challenging; as such I encourage you to unitize office hours. In addition, I encourage you to collaborate with
and befriend your classmates. I want this to be an enjoyable and worthwhile endeavor for each of
you!

With all of that said, lets answer the question posed by the title of the chapter: What is Linear Algebra?

There are many correct answers to what is linear algebra, each of which depends strongly on what you will
use linear algebra for; for now, we will keep in mind a down-to-earth answer. However, I strongly encourage
you to come back periodically and think about what linear algebra means to you as you learn more about
this beautiful subject.

Answer: Linear algebra is the study of n-dimensional spaces, the functions between them, and how they
fit inside each other. By an n-dimensional space, I mean a 0-dimensional space is a point, a 1-dimensional
space is a line, a 2-dimensional is the plane, and so on.

Now, you might be wondering:

Question: How do I succeed in this class.

Answer: To succeed in this class, you should, at minimum, do the following:
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1. Study the online lecture notes and/or textbook before and after each class.

2. Come to class with questions.

3. Start homework early! It will be challenging.

4. Come to office hours. You do not need to have questions to come to office hours; it can be
a space for you to do homework with others.

5. Talk and study with your peers.

6. Don’t give up when things get hard (I can’t stress this enough)!

7. Most importantly, have fun!

With all of that said, lets embark on our journey into the fantastic world of linear algebra!



Chapter 2

Systems of Linear Equations and
Matrices

2.1 Systems of Linear Equations

In the last chapter, we said that linear algebra is the study of n-dimensional spaces, the functions between
them, and how they fit inside of each other. Our first step toward making sense of this is through systems
of linear equations. First, a couple of definitions, and then we will look at why systems of linear equations
are the right thing to look at if we want to study n-dimensional spaces.

Linear Equation

Definition 2.1. A linear equation in the variables x1, . . . , xn is an equation of the form

a1x1 ` a2x2 ` . . . ` anxn “ b,

where all ai and b are complex numbers.

Example 2.1. The following are examples of linear equations:

1. x1 ` 2x2 “
?
2

2. x2 ´ 8x3 ´ 2x5 “ 3x1 ` 1

3. 21x2 ` 5x4 “ 0

Example 2.2. The following are not examples of linear equations:

1. x2
1 ´ x2 “ 5

2. ex1´x2 ` x3 “ 2

3. x1x4 ´ x2x3 “ 0

4. 1
x1

“ 2

5. sinpx2
1 ´ x2

2q “
?
2

6.
?
x1 ` 2x2 “

?
7

3
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Linear equations are very good models of n-dimensional spaces. Indeed, the graph of a linear equation
in 2 variables is a line (or 1-dimensional space), the graph of a linear equation in 3 variables is a plane (or
2-dimensional space), and so on. We will want to see how these equations (spaces) interact when they are in
the same ambient space; that is: we want to figure out when they intersect. This leads us to the following
definition.

System of Linear Equations

Definition 2.2. A system of linear equations is a collection of one or more linear equations involving
the same variables.

Example 2.3. The following are examples of systems of linear equations:

1.

$

’

&

’

%

4x1 ` x2 “ 7

2x1 ´ 2x2 “
?
3

x2 `
?
14x2 “ 0

2.

$

’

&

’

%

2x1 ` x3 “ 0

2x1 ´ 2x2 “
?
3

x1 ´ x4 “ 0

Solution

Definition 2.3. A solution to a system of linear equations is a tuple ps1, . . . , snq of real numbers
that make each linear equation in the system a true statement.

Example 2.4. p3, 2q is a solution for the following system of linear equations, but p0, 1q is not a solution.

#

x1 ´ 2x2 “ ´1

´x1 ` 3x2 “ 3

Solution Set

Definition 2.4. The set of all possible solutions to a system of linear equations is called the solution
set. Two linear systems are said to be equivalent if they have the same solution sets.

Example 2.5. 1. The solution set to the system

#

x1 ´ 2x2 “ ´1

´x1 ` 3x2 “ 3

is the set {(3,2)}. Here’s a geometric picture of what is going on:
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2. The solution set to the system

#

x1 ´ 2x2 “ ´1

´x1 ` 2x2 “ 3

is the empty set, meaning there is no solution. Here is a geometric picture of what is going on:

3. The solution set to the system

#

x1 ´ 2x2 “ ´1

2x1 ´ 4x2 “ ´2

is the line carved out by x1 ´ 2x2 “ ´1. Here is a geometric picture of what is going on:
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These three examples illustrate the following fact:

Theorem 2.1. The solution set to any system of linear equations in any number of variables is
either

1. The empty set (i.e no solution).

2. One and only one point.

3. Infinitely many points.

Proof. Postponed for now.

Consistent and Inconsistent Systems

Definition 2.5. If a system of linear equations has at least one solution, it is called consistent. If
it has no solutions, it is called inconsistent.

Example 2.6. Using an online graphing convince yourself that Theorem 2.1 is true for systems of linear
equations of three variables.

2.1.1 Matrix Notation

It is very convenient to encode information about a system of linear equations into a rectangular array called
a matrix. There are two ways to do this, which we will demonstrate through an example.

Example 2.7. Consider the following system of linear equations

$

’

&

’

%

3x1 ` x2 ` 2x3 “ 0

x1 ` x3 “ 2

´2x1 ` 2x2 “ 7

,

The coefficient matrix of the system of linear equations is made by arranging the coefficients of the
system into the following matrix
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»

–

3 1 2
1 0 1

´2 2 0

fi

fl .

We will find it useful to define the augmented matrix of a system of linear equations by also including
the values on the right hand side of the equal signs:

»

–

3 1 2 0
1 0 1 2

´2 2 0 7

fi

fl

Size of a Matrix

Definition 2.6. A matrix is an mˆn matrix if it has m rows (horizontal) and n columns (vertical).
If m “ n, we say that the matrix is a square matrix of size m.

So, why should we look at matrices? It turns out that the augmented matrix of a system of linear
equations contains a sufficient information to find the solution set. We will dive more into this soon. For
now, we will talk about elementary row operations as these will very useful tools in our venture to find
solution sets for any size system of linear equations!

Elementary Row Operations

Definition 2.7. The elementary row operations are the following:

1. Replacement: replace one row by the sum of itself and a multiple of another row.

2. Interchange: Switch the position of two rows.

3. Multiply all entries in a row by a nonzero constant.

Row Equivalent Matrices

Definition 2.8. We say that two matrices are row equivalent if one can use elementary row
operations to from one matrix to the other.

Here is why we consider these operations:

Theorem 2.2. Suppose a matrix, which we will call A, is the augmented matrix for a system of
linear equations. If B is a matrix that is row equivalent to A (i.e we can use row operations to go
from A to B), then the system of linear equations represented by B has the same solution set as the
original system.

Proof. We will do this by checking the statement for each elementary row operation applied to A to form B.
Here, we will only show it is true for the row operation that scales the i-th row of A by a nonzero constant,
k to form B. That is: B is the matrix A whose i ´ th row has been scaled by some nonzero constant k. I
leave the remaining two for you to verify if you like (their verification’s are very similar).

Suppose A represents the SLE
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$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

a11x1 ` ¨ ¨ ¨ ` a1mxm “ a1
...

ai1x1 ` ¨ ¨ ¨ ` aimxm “ ai
...

an1x1 ` ¨ ¨ ¨ ` anmxm “ an

.

Then, B represents the SLE

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

a11x1 ` ¨ ¨ ¨ ` a1mxm “ a1
...

kai1x1 ` ¨ ¨ ¨ ` kaimxm “ kai
...

an1x1 ` ¨ ¨ ¨ ` anmxm “ an

.

First, suppose that ps1, . . . , smq is a solution to the SLE represented by A. Then

a11s1 ` ¨ ¨ ¨ ` a1msm “ a1

...

ai1s1 ` ¨ ¨ ¨ ` aimsm “ ai

...

an1s1 ` ¨ ¨ ¨ ` anmsm “ an

.

Furthermore, multiplying the i-th equation above by k implies

a11s1 ` ¨ ¨ ¨ ` a1msm “ a1

...

kai1s1 ` ¨ ¨ ¨ ` kaimsm “ kai

...

an1s1 ` ¨ ¨ ¨ ` anmsm “ an

.

Therefore, ps1, . . . , smq is a solution to the SLE represented by B.

Next, suppose that pt1, . . . , tmq is a solution to the SLE represented by B, then

a11t1 ` ¨ ¨ ¨ ` a1mtm “ a1

...

kai1t1 ` ¨ ¨ ¨ ` kaimtm “ kai

...

an1t1 ` ¨ ¨ ¨ anmtm “ an

.

Dividing the i-th row by k yields
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a11t1 ` ¨ ¨ ¨ ` a1mtm “ a1

...

ai1t1 ` ¨ ¨ ¨ ` aimtm “ ai

...

an1t1 ` ¨ ¨ ¨ anmtm “ an

.

Hence, pt1, . . . , tmq is a solution ot the SLE represented by A. In particular, we have shown any solution
to the SLE represented by A is a solution to the SLE represented by B. Similarly, we have shown the
opposite: every solution to the SLE represented by B is a solution to the SLE represented by A. Hence,
they must have the same solution sets!

This is incredibly powerful! We can simplify an augmented matrix in such a way that we can determine
whether or not a system is consistent, as we shall now see:

Example 2.8. Consider the system of linear equations

$

’

&

’

%

x1 ´ 2x2 ` x3 “ 0

2x2 ´ 8x3 “ 8

5x1 ´ 5x3 “ 10

.

The augmented matrix of this system is

»

–

1 2 1 0
0 2 ´8 8
5 0 ´5 10

fi

fl .

Since elementary row operations do not change the solution set to a system of linear equations, lets
simplify the above matrix to something more tame.

»

–

1 2 1 0
0 2 ´8 8
5 0 ´5 10

fi

fl

´5R1`R3 ÞÑR3
´́´́ ´́ ´́ ´́Ñ

»

–

1 2 1 0
0 2 ´8 8
0 10 ´10 10

fi

fl

1
10R3 ÞÑR3

´́ ´́ ´́ Ñ

»

–

1 2 1 0
0 2 ´8 8
0 1 ´1 1

fi

fl

´2R3`R2 ÞÑR2
´́´́ ´́ ´́ ´́Ñ

»

–

1 2 1 0
0 0 ´6 6
0 1 ´1 1

fi

fl

1
6R2 ÞÑR2

´́ ´́ ´́ Ñ

»

–

1 2 1 0
0 0 ´1 1
0 1 ´1 1

fi

fl

We may stop here (although we can go further, which we will do next time). From this new matrix, we can
pick out a solution to the original system of linear equations. Indeed, row 2 tells us that x3 “ ´1. Using this,
row 3 tells us that x2 “ 0. Finally, row 1 tells us that x1 “ 1. Therefore, the original system is consistent
with p1, 0,´1q being a solution.

Helpful Tip: It is helpful to think of matrices and systems of linear equations as the same thing under
different guises. What we mean by this is that if you see a matrix you should think about it as being the
augmented matrix of some system of equations, and, on the other hand, when you see a system of linear
equations, you should think of its augmented matrix. As with many aspects of mathematics, different
points of view of the same thing is a power that cannot be overestimated.

2.2 More Row Reduction and the Echelon Forms

In the last section we introduced elementary row operations and saw how they can aid us in solving a system
of linear equations. It seems reasonable, at this point, to ask
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Question: Can we find the solution set to any system of linear equations by writing down its augmented
matrix and performing row operations?

Answer: Yes!

Not only can we find the solution set to any system of linear equations using row operations, but there
are always two forms we can row reduce the augmented matrix into that yields valuable information about
our system of linear equations called Row Echelon Form (REF) and Reduced Row Echelon Form
(RREF). These forms and the information they posses will be the content of this section, and

The Echelon Forms

Definition 2.9.

1. A matrix is said to be in row Echelon form (REF), or simply Echelon form, if it satisfies the
following properties:

(a) All nonzero rows are above any rows consisting of all zeros.

(b) Each leading entry (i.e the left most nonzero entry) of a row is in a column tot he
right of the leading entry of the row above it.

(c) All entries below a leading term are 0.

2. A matrix is said to be in row reduced Echelon form (RREF) if it satisfies the following conditions:

(a) It satisfies all properties of being in REF.

(b) The leading entry of each row is 1.

(c) Each leading 1 is the only nonzero entry in its column.

Remark 1. If a matrix is in RREF, then it is in REF. However, if a matrix is in REF, then it may not be
true that it is in RREF, as we shall see in examples 2.9 and 2.10.

Example 2.9. The following matrix is in REF but not in RREF:

»

–

2 0 7 9 1 10
0 0 3 0 2 3
0 0 0 0 0 2

fi

fl .

The following matrix is not in REF:
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»

–

2 1 0
2 0 0
0 0 1

fi

fl .

Example 2.10. The following matrix is in RREF:

»

–

1 0 2 0
2 1 0 0
0 0 0 1

fi

fl .

The following matrix is in REF but not RREF:

»

–

1 0 2
2 1 0
0 0 0

fi

fl .

Theorem 2.3. Given any matrix A, there exists a series of row operations that put a matrix into
a REF. Similarly, there is a series of row operations that put a matrix into a RREF. In other words,
A is row equivalent to REF and RREF matrices.

Proof. We will postpone this for now. Later, we will describe an algorithm that shows this.

Uniqueness of RREF

Theorem 2.4. Given any matrix A, the RREF of A is unique. That is to say there is only one
RREF we can row reduce A to.

Proof. We won’t prove this; however, I encourage you to try!

The following is a homework exercise, but as it is important, we will state it here.

Exercise 2.11. A matrix A has a unique RREF by Theorem 2.2. However, a matrix A can have many
different REF’s. Construct an example of a matrix with multiple REF’s.

Before we discuss an algorithm to row reduce a matrix to a REF or RREF, we will find it helpful to
define a couple of terms. But first, a related meme:
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Pivots

Definition 2.10. A pivot position in a matrix A (not necessarily in RREF) is a location in A that
corresponds to a leading 1 in the RREF of A. A pivot column of A is a column of A that contains a
pivot column.

This is, perhaps, a strange definition; so, lets do an example and identify the pivot positions and pivot
columns of a matrix.

Example 2.12. We will find all of the pivot positions and pivot columns of the following matrix

A “

»

–

3 0 2 1
2 2 0 0

´1 1 0 0

fi

fl .

Lets perform some row operations to put A into RREF:

»

–

3 0 2 1
2 2 0 0

´1 1 0 0

fi

fl

R1ØR3
´́ ´́ Ñ́

»

–

1 ´1 0 0
2 2 0 0
3 0 2 1

fi

fl

´2R1`R2 ÞÑR2
´3R1`R3 ÞÑR3

´́´́ ´́ ´́ ´́Ñ

»

–

1 ´1 0 0
0 4 0 0
0 3 2 1

fi

fl

1
4R2 ÞÑR2

´́ ´́ ´́ Ñ

»

–

1 ´1 0 0
0 1 0 0
0 3 2 1

fi

fl

´3R2`R3 ÞÑR3
R2`R1 ÞÑR1

´́´́ ´́ ´́ ´́Ñ

»

–

1 0 0 0
0 1 0 0
0 0 2 1

fi

fl

1
2R3 ÞÑR3

´́ ´́ ´́ Ñ

»

–

1 0 0 0
0 1 0 0
0 0 1 1

2

fi

fl

This is the RREF of A. Below are circled the leading ones, which correspond to the pivot positions of
A. Also, highlighted, are the pivot columns of A.

As the above example shows not all columns of a matrix will be pivot columns!.

2.2.1 The Row Reduction Algorithm (Gaussian Elimination)

We will describe the algorithm of Gaussian Elimination, which yields a way to put a matrix into REF or
RREF. Given a matrix A, we proceed in the following steps:
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Gaussian Elimination

Algorithm 2.1.

1. Start with the left most nonzero column. Select a nonzero entry in the column to be a pivot.
If necessary, interchange two rows so the pivot is at the top of the matrix.

2. Use row operations to get zeros in all positions below the pivot you found in step 1.

3. Cover the first row of the new matrix and apply 1-2 to the new matrix with the first row deleted.
Keep doing this until you cannot.

4. Starting form the right most column, create zeros above each pivot.

Let’s return to systems of linear equations! Given an augmented matrix, we may put it into REF or
RREF, which yields information about the solution set of the system of linear equations. Before we see an
example of this, we will take a brief detour through the world of solution sets. As we said in the previous
section, there are systems of equations with infinitely many solutions; for these systems it would be very
inefficient (and impossible) to enumerate all solutions by hand. To remedy this, we can describe all solutions
using parameters (or free variables). To this end, we will find the next definition to be useful.

Free and Basic Variables

Definition 2.11. Suppose a matrix is A is the augmented matrix of a system of linear equations.
The variables corresponding to pivot columns are called basic variables and the other variables are
called free variables.

Example 2.13. We will find the solution set of the following system of linear equations by putting its
augmented matrix into RREF and identifying pivot positions/columns:

$

’

&

’

%

x1 ` 2x2 ` 3x3 “ 0

4x1 ` 4x3 ` x4 “ 8

2x1 ` 6x3 ` 8x4 “ 4

.

Let’s apply Gaussian elimination to put the augmented matrix into RREF:

»

–

1 2 3 0 0
4 0 4 1 8
2 0 6 8 4

fi

fl

´4R1`R2 ÞÑR2
´2R1`R3 ÞÑR3

´́´́ ´́ ´́ ´́Ñ

»

–

1 2 2 0 0
0 ´8 ´8 1 8
0 ´4 0 8 4

fi

fl

´1
4 R3 ÞÑR3

´́ ´́ ´́ Ñ́

»

–

1 2 2 0 0
0 ´8 ´8 1 8
0 1 0 ´2 ´1

fi

fl

R2ØR3
´́ ´́ Ñ́

»

–

1 2 2 0 0
0 1 0 ´2 ´1
0 ´8 ´8 1 8

fi

fl

8R2`R3 ÞÑR3
´́ ´́ ´́ ´́ Ñ

»

–

1 2 2 0 0
0 1 0 ´2 ´1
0 0 ´8 ´15 0

fi

fl

´1
8 R3 ÞÑR3

´́ ´́ ´́ Ñ́

»

–

1 2 2 0 0
0 1 0 ´2 ´1
0 0 1 15

8 0

fi

fl

´2R3`R1 ÞÑR1
´́´́ ´́ ´́ ´́Ñ

»

–

1 2 0 ´15
4 0

0 1 0 ´2 ´1
0 0 1 15

8 0

fi

fl

´2R2`R1 ÞÑR1
´́´́ ´́ ´́ ´́Ñ

»

–

1 0 0 1
4 2

0 1 0 ´2 ´1
0 0 1 15

8 0

fi

fl

We then see that x1, x2, and x3 are basic variables for our system, and x4 is a free variable. From the
RREF we found, we find that x3 “ ´ 15

8 x4, x2 “ 2x2 ´ 1, and x1 “ ´ 1
4x4 ` 2. A sufficient way to write this

is to say the following is a parametric description of the general solution:
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$

’

’

’

&

’

’

’

%

x1 ´ 1
4x4 ` 2

x2 “ 2x2 ´ 1

x3 “ ´ 15
8 x4

x4 is free

Note: sometimes people replace free variables with letters like t or s; we won’t do that here, but we might
in the future. Here, we see that x4 can be any number, and it will determine what x1, x2, and x3 need to
be to give a solution to the system (this is why we say that x4 is a free variable). For example, set x4 “ 0.
Then, x1 “ 2, x2 “ ´1 and x3 “ 0. Thus, p2,´1, 0, 0q is a solution to our original solution..

The number of free variables of a system is the dimension of the solution set. To make sense of this, we
need to agree on a notion of dimension, which will come up later.

We will end this section with a beautiful theorem that determines whether or not a system is consistent
just by analyzing the REF of a matrix!

Theorem 2.5. A system of linear equations is consistent if and only if the right most olumn of the
augmented matrix is not a pivot column. In other words, the REF of the augmented matrix has no
row of the form

“

0 . . . 0 b
‰

where b is any nonzero number.

2.3 Vectors in Rn

In this section we will introduce the notion of vectors; however, for now, we will only focus on vectors in
Rn. As we will see later, there is a more abstract notion of vectors. We will find that vectors offer us a very
convenient language to describe what is going on with systems of linear equations and the spaces that they
carve out!

Rn

Definition 2.12. The set Rn is define to be the set of of n-tuples of real numbers.

Example 2.14. Lately, we have been working with R2, which we visualize as the Cartesian plane. We’ve
even thought about R3 a bit, which we visualize as 3 dimensional space. In general we may think of Rn as
n-dimensional space. Though, I must caution you that later on n-dimensional space will encompass more
than just Rn; however, for now, we will abuse this terminology!

Vectors

Definition 2.13. A vector (or column vector) in Rn is a n ˆ 1 matrix of real numbers. Caution:
later on vector will mean something that will encompass more than the elements of Rn.

Example 2.15. The following is a vector in
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»

—

—

–

1
0
2

?
6

fi

ffi

ffi

fl

in R4

As we can see in the last example, sometimes it takes up a lot of space to write a vector as an n ˆ 1
matrix, so we will sometimes write a vector as an n-tuple. Precisely, we shall take

»

—

–

a1
. . .

an

fi

ffi

fl

“ pa1, . . . , anq

Caution: pa1, . . . , anq ‰
“

a1 . . . an
‰

. The latter is an 1 ˆ n matrix.

A vector a “ pa1, . . . , anq can be visualized in two ways: 1) They can be thought of as points pa1, . . . , anq

in Rn; 2) We can also think of the vector a as an arrow from the origin of Rn to the point pa1, . . . , anq. We
will often take the view of 2) when thinking about vectors. Below are two figures that illustrate these two
viewpoints.

x

y

u

v

x

y

u

v

Visualizing vectors as arrows is extremely useful, as we shall see shortly.

2.3.1 Operations with Vectors

While vectors are not numbers (rather they are an ordered list of numbers), we can still perform some
operations with them, like addition, subtraction, and scaling. Though we must caution ourselves!
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Vector Addition and Scalar Multiplication

Definition 2.14. We add two vectors a “ pa1, . . . , anq and b “ pb1, . . . , bnq component wise:

a ` b “ pa1 ` b1, . . . , an ` bnq “

»

—

–

a1 ` b1
...

an ` bn

fi

ffi

fl

.

Suppose that c P R (c is a real number). Then, a scaled by c is

ca “ pca1, . . . , canq “

»

—

–

ca1
...

can

fi

ffi

fl

.

Example 2.16. Let u “

»

–

1
2
6

fi

fl and v “

»

–

0
1
3

fi

fl. We compute the following:

1. u ` v “

»

–

1
2
6

fi

fl `

»

–

0
1
3

fi

fl “

»

–

1
3
9

fi

fl

2. ´v “ p´1q

»

–

0
1
3

fi

fl “

»

–

0
´1
´3

fi

fl

3. u ´ v “

»

–

1
2
6

fi

fl ´

»

–

0
1
3

fi

fl “

»

–

1
1
3

fi

fl

Exercise 2.17. Draw the vectors u “

„

2
´1

ȷ

, 2u, ´u, and ´2u. Geometrically what is the relationship

between ´u and u?

Zero Vector

Definition 2.15. We call the vector in Rn consisting of all zeros the zero vector, and denote it by
0. Explicitly,

0 “

»

—

—

—

–

0
0
...
0

fi

ffi

ffi

ffi

fl

Proposition 2.1. Let a,b, and c be vectors in Rn and c, d P R. Then, the following hold:

a) a ` b “ b ` a. e) cpa ` bq “ ca ` cb “ pa ` bqc.
b) pa ` bq ` c “ a ` pb ` cq. f) pc ` dqa “ ca ` da.
c) a ` 0 “ 0 ` a “ a. g) cpdaq “ cda.
d) a ` p´aq “ ´a ` a “ 0. h) 1a “ a.
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Example 2.18. We compute:

1

2

¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

2
4

´6
0

´8

fi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

–

4
´2
0
2

´8

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

“

»

—

—

—

—

–

1
2

´3
0

´4

fi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

–

2
´1
0
1

´4

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

3
1

´3
1

´8

fi

ffi

ffi

ffi

ffi

fl

.

Note, there are a few different ways to go about computing this. I encourage you to try and find another
way!

Parallelogram Law for Vectors

Proposition 2.2. The addition of two vectors a and b in R2 is the fourth vertex of the parallelogram
whose other three vertices are 0,a, and b.

x

y

a

a

a ` b

Example 2.19. Below, we draw the vectors a “ p´2, 1q and b “ p1, 3q, and then draw a ` b by using the
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Parallelogram Law for Vectors.

x

y

2.3.2 Linear Combinations and Spans

Linear Combination

Definition 2.16. Let x1, . . . ,xn be vectors in Rn and c1, . . . , cn P R. Then, we call

c1x1 ` . . . ` cnxn

a linear combination of the vectors x1, . . . ,xn with weights c1, . . . , cn P R

Often, we will want to consider all linear combinations of a set of vectors. To this end, we define the
span of a set of vectors.

Span

Definition 2.17. Let x1, . . . ,xn be vectors. We define the Span of 1, . . . ,n to be the set of all linear
combinations of x1, . . . ,xn. Often, we will denote this set by Spanpx1, . . . ,xnq

The definition of Span seems a bit out of the blue, so lets ground ourselves in an example or two. First,
lets look at the most basic example at our disposal: the span of a set of one vector in R2.

Example 2.20. Consider the vector a “ p1, 3q in R2. The span of a is the set of all linear combinations of
a; that is the set of all things of the form ca with c P R. Geometrically, this is the line through the orgin
passing through p1, 3q, as depicted below.
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x

y

Span(a)

a

Example 2.21. Consider the vectors a “ p0, 1, 1q and b “ p0, 0, 1q in R3. What do you think Spanpaq looks
like? What about Spanpa,bq?

Using the same logic as found in the previous example, we can surmise that Spanpaq is the line in R3

that passes through the origin passing through the point p0, 1, 1q.

Finding Spanpa,bq is slightly more challenging. It is the plane in R3 that contains the orgin, a, and b.
Try and convince yourself of this! Here is a picture to help courtesy of Geogebra:

Example 2.22. Let x1 “

»

–

1
2
0

fi

fl and x2 “

»

–

1
4
1

fi

fl. We will determine whether or not the vector a “

»

–

´1
´6
´2

fi

fl is

in the span of x1 and x2. Translating from math to English, can we find weights c1 and c2 such that
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c1

»

–

1
2
0

fi

fl ` c2

»

–

1
4
1

fi

fl “

»

–

´1
´6
´2

fi

fl .

Lets use our knowledge of addition of vectors to simplify the above equation to get:

»

–

c1 ` c2
2c1 ` 4c2

c2

fi

fl “

»

–

´1
´6
´2

fi

fl .

Thus,

»

–

´1
´6
´2

fi

fl is a linear combination of x1 and xn if and only if the system given by

$

’

&

’

%

c1 ` c2 “ ´1

2c1 ` 4c2 “ ´6

c2 “ ´2

.

As if, magically, by design, we have talked about how to solve systems like this! There are a few different
ways to go about it, but we will use Guassian Elimination to determine if the system is consistent or not.
Skipping a few steps, of which I will leave to you to check, the REF of

»

–

1 1 ´1
2 4 ´6
0 1 ´2

fi

fl

is the matrix

»

–

1 1 ´1
0 1 ´2
0 0 0

fi

fl .

Thus, by Theorem the above system is consistant and so a “

»

–

´1
´6
´2

fi

fl is a linear combination of x1 and

x2. Going a bit further, the REF we just found tells us that c1 “ 1 and c2 “ ´2 will work (check this!)

The above example demonstrates the following theorem

The Theorem

Theorem 2.6. Let x1, . . . ,xn, and b be vectors. Then, the following are equivalent (i.e the following
say the same thing):

1. b is in the span of tx1, . . . ,xnu

2. there are c1, . . . , cn P R such that

c1x1 ` . . . cnxn “ b.

3. the system, whose augmented matrix is

“

x1 . . . xn b
‰

,

is consistent.
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Example 2.23. Using this theorem, we can see that the span of the vector p1, 0q and p0, 1q is all of R2!
Here, we will notice that we usually think of the dimension of R2 as 2, and there are two vectors that span
R2. Hmm... maybe dimension and spanning are related. We will make this observation formal soonish!

Warning: We must be careful when we determine what the span of a collection of vectors look like. The
span of a single non-zero vector will always be a line. But, the span of two vectors may not be a plane like
in the exercise above; it can be a line or a plane. In fact, the span of a set of p-vectors can possibly be a
1-dimensional, 2- dimensional, 3-dimensional, ..., or p-dimensional space, though we must develop tools (not
yet developed) to determine which dimension it will be.

Exercise 2.24. Can you find an example of two vectors whose span is a line?

2.4 Matrix Equations

As we have seen, it is often useful to interpret systems of equations as information encoded into a matrix
(i.e its augmented matrix). We will continue this theme of translating ideas into expressions involving
matrices! Last time we talked about linear combinations of vectors in Rn; it turns out that we can encode
this infomration into something called a matrix equation. Before we do this, we should discuss matrix
operations.

2.4.1 Matrix Equations

Sometimes vectors aren’t enough information. Sometimes, we might be tempted to collect vectors (in the
same space) together. The usual way we go about this is through matrices!

Matrix Entry

Definition 2.18. Let A be any matrix, we define rAsi,j to be the pi, jq-entry of A. In other words
rAsi,j is the entry located at the i-th row and j-th column of A.

Example 2.1. The p2, 3q entry of the matrix

A “

»

–

1 7 5 6
2 6 0 9
2 4 2 1

fi

fl

is rAs2,3 “ 0

Square Matrix

Definition 2.19. A matrix is called a square matrix if is is of size nn for some n.

Matrix Entry

Definition 2.20. Let A be any matrix, we define rAsi,j to be the pi, jq-entry of A. In other words
rAsi,j is the entry located at the i-th row and j-th column of A.



22 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS AND MATRICES

Matrix Addition

Definition 2.21. Let A and B be two matrices of the same size, say m ˆ n with

A=

»

—

—

—

–

a11 . . . a1n
a21 . . . a2n
... . . .

...
amn . . . amn

fi

ffi

ffi

ffi

fl

B=

»

—

—

—

–

b11 . . . a1n
b21 . . . b2n
... . . .

...
bm1 . . . bmn

fi

ffi

ffi

ffi

fl

.

We define the addition of A and B to be

A ` B

»

—

—

—

–

a11 ` b11 . . . a1n ` b1n
a21 ` b21 . . . a2n ` b2n

... . . .
...

a1m ` bm1 . . . amn ` bmn

fi

ffi

ffi

ffi

fl

.

We refer to this as component wise addition.

Note that in the definition of A ` B, where A and B are matrices of the same size, it does not make a
whole lot of sense to add two matrices of different sizes!

Now lets talk about how we can multiply two matrices. Unfortunately, we cannot just multiply any two
matrices we wish; the two matrices we want to multiply must complement each other in some way.

Matrix Multiplication

Definition 2.22. Let A and B be two matrices of possibly different sizes. Let A have size m ˆ n
and B have size j ˆ k. Then,

1. if the number of columns of A is the number of rows of B (or n “ j), we define

AB “

»

—

—

—

–

a11 . . . a1n
a21 . . . a2n
... . . .

...
amn . . . amn

fi

ffi

ffi

ffi

fl

»

—

—

—

–

b11 . . . b1k
bn1 . . . b2k
... . . .

...
bn1 . . . bjk

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

a11b11 ` a12b21 ` . . . ` a1nbn1 a11b12 ` a12b22 ` . . . ` a1nbn2 . . . a11b1k ` a12b2k ` . . . ` a1nbnk
a21b11 ` a22b21 ` . . . ` a2nbn1 a21b12 ` a22b22 ` . . . ` a2nbn2 . . . a21b1k ` a22b2k ` . . . ` a2nbnk

...
... . . . . . .

am1b11 ` am2b21 ` . . . ` amnbn1 am1b12 ` am2b22 ` . . . ` amnbn2 . . . am1b1k ` am2b2k ` . . . ` amnbnk

fi

ffi

ffi

ffi

fl

.

2. if the number of columns of A is not the number of rows of B, then AB is not defined.

Sometimes we will find it useful to point out a particular entry of a matrix product. The following
proposition aids us in this endeavor

Proposition 2.3. Let A and B be two matrices of size m ˆ n and n ˆ k, respectively. Then the
pi, jq entry of the matrix AB is given by multiplying the i-th row of A against the j-th column of B.
That is, using the notation of definition ,

rABsi,j “ ai,1b1,j ` ai,2b2,j ` . . . ` ai,nbn,j
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Exercise 2.25. Warning: For square matrices A and B show that it is not necessarily true that AB “ BA.
In other words matrix multiplication is not commutative.

Using this definition of matrix multiplication, we can reframe the notion of linear combinations of vectors
using matrix notation.

Proposition 2.4. Let A be an m ˆ n matrix, with columns given by the a1 “

»

—

–

a11
...

am1

fi

ffi

fl

, . . . ,an “

»

—

–

a1n
...

amn

fi

ffi

fl

. In other words

A “
“

a1 . . . an
‰

“

»

—

—

—

–

a11 . . . a1n
a21 . . . a2n
... . . .

...
amn . . . amn

fi

ffi

ffi

ffi

fl

.

Let c be any vector in Rn (note that this is the same n that occurs in the size of A). Then, the
product of A and c,

Ac “
“

a1 . . . an
‰

»

—

–

c1
...
cn

fi

ffi

fl

“ c1a1 ` . . . ` cnan

is the linear combination of a1, . . . ,an with weights c1, . . . , cn. Warning: Ac makes sense, but cA
does not! (why?)

Lets practice using this propositon!

Example 2.26. 1.

„

2 7 8 11
1 8 0 0

ȷ

»

—

—

–

2
3
6
0

fi

ffi

ffi

fl

“ 2

„

1
2

ȷ

` 3

„

7
8

ȷ

` 6

„

8
0

ȷ

` 0

„

11
0

ȷ

2. For any vectors x1,x2,x ` 3 in R3, we can write the linear combination 3x1 ´ 2x2 ` 8x3 as a matrix
times a vector:

“

x1 x2 x3

‰

»

–

3
´2
8

fi

fl “ 3x1 ´ 2x2 ` 8x3.

All of these equations may seem confusing and daunting, but remember: we are using matrix multipli-
cation to translate linear combinations to an equality involving matrices (and vice versa). It is two ways of
writing the same thing, and being able to fluidly go back and forth between the two is very important!

The following is an important and useful fact:
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Proposition 2.5. Let A and B be m ˆ n matrices, let a and b be vectors in Rn and c P R. Then,

1. Apa ` bq “ Aa ` Ab

2. pA ` Bqpaq “ Aa ` Bb

3. Apcaq “ cpAaq

2.4.2 Old results under new guises.

A constant theme in this class is rewriting a number of things in different ways; we’ve had a bit of practice
with this already! So, for many sections in these notes, we will be rewriting old theorems in new terminology;
in fact you will notice that the next theorem is just theorem 2.3.2 with some new notation. We will start
this practice by relating systems of equations to the language of matrix equations!

The Theorem

Theorem 2.7. Let A “
“

a1 . . . an
‰

be an m ˆ n matrix and b P Rm. Then, the following are
equivalent:

1. x “ px1, . . . xnq is a solution to the system of linear equations represented by the augmented
matrix

“

a1 . . .an b
‰

2. Ax “ b

3. b is a linear combination of the vectors a1, . . . ,an with weights x1, . . . , xn. That is

x1a1 ` . . . ` xnan “ b.

The following corollary is a consequence of the above Theorem.

Corollary 2.1. Let A “
“

a1 . . . an
‰

be an m ˆ n matrix and b P Rm. Then, the following are
equivalent:

1. For every b P Rm, there is a solution, x, t0 the matrix equation Ax “ b.

2. For every b P Rm is a linear combination of the columns of A.

3. The columns of A span Rm. In other words, Spanpa1, . . . ,anq “ Rm.

4. A has a pivot position in every row.

Lets get a bit of practice using these useful facts!

Example 2.27. Let A “

»

–

1 2 0
2 3 1
0 1 ´ 2

fi

fl and b “

»

–

b1
b2
b3

fi

fl be any vector in R3. We will determine whether

or not Ax “ b has a solutions (equivalently consistent) for all possible b1, b2, b3.

First, lets row reduce the augmented matrix for Ax “ b:
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»

–

1 2 0 b1
2 3 1 b2
0 1 ´2 b3

fi

fl ÞÑ

»

–

1 2 0 b1
0 1 ´2 b3
0 0 1 ´2b1`b2`b3

3

fi

fl .

From this, we see that A has a pivot position in each row. Hence, by our corollary above, Ax “ b is
consistent for any choice of b. Note that we could have just row reduced A rather than the augmented
matrix, but sometimes its useful to know what is happening to the bi, since we can use them to solve for
solutions.

2.5 Solution Sets and Applications / Worksheet 1

Homogeneous System

Definition 2.23. A system of equation is said to be homogeneous, if it can be written as Ax “ 0.
A homogeneous system always has a solution, namely 0, which we call the trivial solution. Any other
solution, if it exists is called a nontrivial solution.

1. Consider the system

$

’

&

’

%

3x1 ` 5x2 ´ 4x3 “ 0

´3x1 ´ 2x2 ´ 4x3 “ 0

6x1 ` x2 ´ 8x3 ´ x4 “ 0

.

(a) Does the system have a nontrivial solution?

(b) Find a parametric description of its solution set.
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(c) Think of a way to rewrite your answer in (b) as a vector equation. Hint: Let x “

»

—

—

–

x1

x2

x3

x4

fi

ffi

ffi

fl

be a

solution, and use your answer in (b) to find something this vector is equal to.
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Problem 1(c) inspires us to make the following definition.

Parametric Vector Equations

Definition 2.24. Suppose that x1, . . . , xn be the basic variables and t1, . . . , tk be the free
variables of a system of linear equations. As we have done before, we have a parametric
description of the systems solution set:

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

x1 “ a1,1t1 ` . . . ` a1,ktk

x2 “ a2,1t1 ` . . . ` a2,ktk
...

...

xn “ an,1t1 ` . . . ` an,ktk

t1 “ free
...

...

tk “ free

where all ai,j are real numbers. As we did in problem 1(c), we may rewrite the parametric
description above as a vector equation:

»

—

—

—

—

—

—

—

—

—

—

—

—

–

x1

x2

...
xn

t1
t2
...
tn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

a1,1t1 ` . . . ` a1,ktk
a2,1t1 ` . . . ` a2,ktk

...
an,1t1 ` . . . ` an,ktk

t1
t2
...
tk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ t1

»

—

—

—

—

—

—

—

—

—

—

—

—

–

a1,1
a2,1
...

an,1
1
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

` t2

»

—

—

—

—

—

—

—

—

—

—

—

—

–

a1,2
a2,2
...

an,2
0
1
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

` tk

»

—

—

—

—

—

—

—

—

—

—

—

—

–

a1,k
a2,k
...

an,k
0
0
...
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

we call the vector equation above a parametric vector equation

Remark 2. I would make sure that this definition makes sense and lines ups with the work we did in
problem 1(c). A definition is only as good as the examples that accompany it (don’t quote me on that
when I forget to include examples)!

2. Fill in the blank: the homogeneous equation Ax “ 0 has a nontrivial solution if and only if the equation
has at least one variable. Hint: see problem 1.

Non-Homogeneous System

Definition 2.25. A system of equation is said to be non-homogeneous, if it can be written as
Ax “ b, where b ‰ 0. In other words, a system of equations is said to be non-homogeneous if
it is not homogeneous. We have seen a few of these already!
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3. Come up with an example of a non-homogeneous system of equations. You don’t need to solve it.

4. Come up with a non-homogeneous system of equations that does not have a solution. How is this
different than homogeneous systems?

5. Consider the homogeneous system of equations

$

’

&

’

%

3x1 ` 5x2 ´ 4x3 “ 1

´3x1 ´ 2x2 ´ 4x3 “ ´1

6x1 ` x2 ´ 8x3 ´ x4 “ 2

.

(a) Is the system consistent?

(b) Find a parametric description of its solution set.
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(c) Think of a way to rewrite your answer in (b) as a vector equation (i.e a parametric vector equation).

Hint: Let x “

»

—

—

–

x1

x2

x3

x4

fi

ffi

ffi

fl

be a solution, and use your answer in (b) to find something this vector is

equal to.

6. Notice that the system in Problem 5 is very similar to the system we saw in problem 1.
What is the difference between the two systems?

It turns out that homogeneous systems and non-homogeneous systems with the same coefficient matrix
have a nice relation between their solution sets. In short, once we know all solution of the homogeneous
system and one solution of the non-homogeneous system, then we can find all solutions of the non-
homogeneous system. This is nice since solving homogeneous equation is typically easier as we don’t
have to worry about how the row operations affect the last column of the augmented matrix (since this
column is all zeros)! The method for finding these non-homogeneous solutions is described in much
more detail in the next theorem:

Theorem 2.8. Suppose Ax “ b is consistent with a solution p (it can be any solution you
want). Then any solution, w, to Ax “ b is given by

w “ vh ` p,

where vh is a solution of the homogeneous system Ax “ 0. Warning: the choice of vh depends
on w.
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7. This exercise will outline the proof of the above theorem. There are two main parts to the proof.

(a) Suppose that w “ vh ` p, where vh is a solution to the homogeneous system and p is a solution
to the non-homogeneous system. Show that w is a solution to Ax “ b.

(b) We aren’t done yet! We still need to show that every solution to Ax “ b has the form vh ` p for
some solution, vh, to the homogeneous system Ax “ 0.

i. Show that w ´ p is a homogeneous solution to Ax “ 0.

ii. Set vh :“ w ´ p, and conclude w “ vh ` p (this should be very short).

(c) Briefly explain why parts (a) and (b) complete the proof of the theorem.

8. Boron Sulfide reacts with water to create boric acid and hydrogen sulfide gas. We will use linear
algebra to balance the following chemical equation that illustrates this reaction:

x1B2S3 ` x2H2O Ñ x3H3BO3 ` x4H2S.

To do so, find whole numbers whole numbers x1, x2, x3, and x4 such that the total number of Boron
(B), Sulfur (S), Hydrogen (H), and Oxygen (0) on the left matches the number on the right. Hint: Try
and set up a system of linear equations.
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2.6 Linear Independence

Lets talk about independence

Linear independence is a central topic in Linear Algebra; in fact, it comes up beyond linear algebra in
module theory (whatever that is). Before we define linear independence, lets discuss how it comes up based
on what we did last time. If you will recall, last time we introduced homogeneous systems of linear equation.
That is, we looked at linear systems of the form

“

a1 a2 . . . an
‰

»

—

—

—

–

x1

x2

...
xn

fi

ffi

ffi

ffi

fl

“ Ax “ 0,

where A is the systems coefficient matrix with column vectors a1, . . . ,an. Lets analayze how A’s column
vectors interact with x “ px1, . . . , xnq:

0 “ Ax “
“

a1 a2 . . . an
‰

»

—

—

—

–

x1

x2

...
xn

fi

ffi

ffi

ffi

fl

“ x1a1 ` x2a2 ` . . . ` xnan

This says that

Ax “ 0 is the same thing as x1a1 ` x2a2 ` . . . ` xnan “ 0.

Therefore, if Ax “ 0 has no non-trivial solution if and only if the only solution to

x1a1 ` x2a2 ` . . . ` xnan “ 0

is px1, . . . , xnq “ 0.

On the other hand, Ax “ 0 has a nontrivial solution if and only if there exist a tuple px1, . . . , xnq such
that not all xi “ 0 and

x1a1 ` x2a2 ` . . . ` xnan “ 0.

These observations lead us to make the following definitions.
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Linear Independence

Definition 2.26. onsider any list of m ˆ 1 column vectors a1, . . . ,an. We say that the vectors
a1, . . . ,an are linearly independent if the only solution px1, . . . , xnq to the vector equation

x1a1 ` x2a2 ` . . . xnan “ 0

is px1, x2, . . . , xnq “ 0.

Linear Dependence

Definition 2.27.
Consider any list of m ˆ 1 column vectors a1, . . . ,an. We say that the vectors a1, . . . ,an are linearly
dependent if the vectors a1, . . .an are not linearly independent. In other words, there is a nˆ1 vector
px1, . . . , xnq such that not every xi “ 0 that satisfies the vector equation

x1a1 ` x2a2 ` . . . xnan “ 0.

Exercise 2.28. Suppose a set of vectors a1, . . . ,ak contains the zero vector. Show that the vectors a1, . . . ,ak

are linearly dependent.

By our work above the two definitions just made, we see that linear independence and linear dependence
of vectors translates to statements about homogeneous systems of equations. Let’s spell out exactly what
we mean by this.

Theorem 2.9. Let a1, . . . ,an be a list of m ˆ 1 column vectors. The following statements are
equivalent (i.e say the same thing):

1. The vectors a1, . . . ,an are linearly independent.

2. The homogeneous system of linear equations:

“

a1 a2 . . . an
‰

x “ Ax “ 0

has no nontrivial solution.

The following Theorem is logically equivalent to Theorem 2.6, but we will state it anyway.
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Theorem 2.10. Let a1, . . . ,an be a list of m ˆ 1 column vectors. The following statements are
equivalent (i.e say the same thing):

1. The vectors a1, . . . ,an are linearly dependent.

2. The homogeneous system of linear equations:

“

a1 a2 . . . an
‰

x “ Ax “ 0

has a nontrivial solution.

I strongly encourage you to become comfortable with being able to translate between linear independence
and systems of equations. These ideas will come back to haunt us time and time again.

Exercise 2.29. If two column vectors a1 and a2 are linearly dependent, show that a1 is a scalar multiple
of a2..

Exercise 2.30. If three column vectors a1,a2, and a3 are linearly dependent, then do they need to be scalar
multiples of each other?

The next theorem is incredibly important, so I encourage you to be comforatble with the statement and
why it is true.

Theorem 2.11. Consider the vectors a1, . . . ,ak in Rn with k ě 2. The vectors a1, . . . ,ak are
linearly dependent if and only if at least one ai is a linear combination of the other aj . Warning:
Not every ai is a linear combination of the others! We only know there is at least one.

Proof. First, we show that if the vectors a1, . . . ,ak are linearly dependent, then at least one of the ai is a
linear combination of the other aj ’s. Since a1, . . . ,ak are linearly dependent, there are constants c1, . . . , ck,
not all zero, such that

c1a1 ` c2a2 ` . . . ` ckak “ 0.

Since not all cj are zero, there is a ci that is not zero. Then,

c1a1 ` . . . ` ci´1ai´1 ` ci`1ai`1 ` . . . ` ckak “ ciai.

Thus, as ci ‰ 0, we may divide both sides of the equation by it:

c1
ci
a1 ` . . . `

ci´1

ci
ai´1 `

ci`1

ci
ai`1 ` . . . `

ck
ci
ak “ ai.

Thereby proving there is at least one ai that is a linear combination of the others.

On the other hand, suppose that some ai is a linear combination of the others. Then, there are constants
ci, such that

c1a1 ` . . . ` ci´1ai´1 ` ci`1ai`1 ` . . . ` ckak “ ai.



34 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS AND MATRICES

Therefore,

c1a1 ` . . . ` ci´1ai´1 ´ ai ` ci`1ai`1 ` . . . ` ckak “

Sometimes it is rather annoying to check whether or not a collection of vectors are linearly independent
or dependent. However, occasionally we are lucky and can tell immediately through inspection. However, I
encourage you to always check your answers using the definition. Nonetheless, lets talk about how we can
use inspection to sometimes tell if a collection of vectors are linearly independent or linearly dependent.
In fact, exercise 2.29 is an example of such an inspection principal; let’s use it!

Example 2.2. We will determine, through inspection, if the vector p1, 2, 0q and p4, 8, 0q are linearly
independent. Since

2p1, 2, 0q “ p4, 8, 0q,

exercise 2.29 tells us that p1, 2, 0q and p4, 8, 0q are linearly dependent. Of course, you could do this
the long way, but it’s nice when we can use inspection.

Often times, we will have a lot more than just two vectors for which we have to determine if they are
linear independent or linear dependent. The more vectors we have, the harder to tell, at least through
inspection. However, there are certain circumstances where we can tell through inspection.

Theorem 2.12. Suppose that a1, . . . ,ak are vectors in Rn (the n here is important)! If k ą n, then
the vectors a1, . . . ,ak are linearly dependent.

Proof. To show that a1, . . . ,ak are linearly dependent, by Theorem ??, it suffices to show that the homoge-
neous system

“

a1 a2 . . . ak
‰

x “ Ax “ 0

has a nontrivial solution. Writing

ai “

»

—

—

—

–

a1i
a2i
...

ani

fi

ffi

ffi

ffi

fl

for all i. Thus, solving Ax “ 0 is the same thing as solving

»

—

—

—

–

a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
. . .

...
an1 an2 . . . ank

fi

ffi

ffi

ffi

fl

x “ 0.

By Problem 2 in Worksheet 1, this is tantamount to showing the matrix
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»

—

—

—

–

a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
. . .

...
an1 an2 . . . ank

fi

ffi

ffi

ffi

fl

has a column with no pivot position since pivot positions correspond to free variables. As k ą n, we have
more columns than rows. Since every row can contain at most one pivot position, and we have more columns
than rows, then there is at least one column with no pivot position. Hence, by Problem 2 in Worksheet 1,
Ax “ 0 has a nontrivial solution. Hence, the vectors a1, . . . ,ak are linearly dependent, as desired.

Remark 3. I tend to think of Theorem 2.6 as saying a set of vectors in Rn is linearly dependent if the
number of vectors is more than the dimension of Rn. We are one step closer to a rigorous definition of
dimension (in fact we have the language to say it now, but lets wait).

Example 2.3. We will determine, through inspection, if the vectors

»

—

—

–

2
3
4
5

fi

ffi

ffi

fl

,

»

—

—

–

7
0
1
2

fi

ffi

ffi

fl

,

»

—

—

–

2
0
0
0

fi

ffi

ffi

fl

,

»

—

—

–

0
1
6
2

fi

ffi

ffi

fl

,

»

—

—

–

1
1
1
1

fi

ffi

ffi

fl

are linearly independent or linearly dependent. Since our vectors are in R4 and there are 5 vectors,
by Theorem ??, we see that the vectors are linearly dependent. Note, that this was a lot faster than
checking this by hand.
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Chapter 3

Even More Matrices

3.1 Arithmetic of Matrices

We have briefly spoken about matrix multiplication and matrix addition. In this section we will explore these
notions and how they interact with inverses and transposes (to be defined later). Since matrix multiplication
can be a bit strange the first (or even second) time we see it, lets remind ourselves how it works, and review
a few examples.

Matrix Multiplication

Definition 3.1. Let A and B be two matrices of possibly different sizes. Let A have size m ˆ n
and B have size j ˆ k. Then,

1. if the number of columns of A is the number of rows of B (or n “ j), we define

AB “

»

—

—

—

–

a11 . . . a1n
a21 . . . a2n
... . . .

...
amn . . . amn

fi

ffi

ffi

ffi

fl

»

—

—

—

–

b11 . . . b1k
bn1 . . . b2k
... . . .

...
bn1 . . . bjk

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

a11b11 ` a12b21 ` . . . ` a1nbn1 a11b12 ` a12b22 ` . . . ` a1nbn2 . . . a11b1k ` a12b2k ` . . . ` a1nbnk
a21b11 ` a22b21 ` . . . ` a2nbn1 a21b12 ` a22b22 ` . . . ` a2nbn2 . . . a21b1k ` a22b2k ` . . . ` a2nbnk

...
... . . . . . .

am1b11 ` am2b21 ` . . . ` amnbn1 am1b12 ` am2b22 ` . . . ` amnbn2 . . . am1b1k ` am2b2k ` . . . ` amnbnk

fi

ffi

ffi

ffi

fl

.

2. if the number of columns of A is not the number of rows of B, then AB is not defined.

Here is a good way to think about matrix multiplication (I, personally, think about it this way most
often):

Proposition 3.1. Let A and B be two matrices of size m ˆ n and n ˆ k, respectively. Then the
pi, jq entry of the matrix AB is given by multiplying the i-th row of A against the j-th column of B.

Proof. This follows immediately from the definition of matrix multiplication. If it is not clear, that is okay!
I encourage you to give it some more thought until you understand it better than the back of your hand.

Lets do an example, just to be sure we are all on the same page!

37
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Example 3.1. We compute the following matrix product:

„

2 0 1
3 0 ´1

ȷ

»

–

1 6
2 2
0 1

fi

fl “

„

2 ¨ 1 ` 0 ¨ 2 ` 1 ¨ 0 2 ¨ 6 ` 0 ¨ 2 ` 1 ¨ 1
3 ¨ 1 ` 0 ¨ 2 ` ´1 ¨ 0 3 ¨ 6 ` 0 ¨ 2 ` 1 ¨ 1

ȷ

“

„

2 13
3 19

ȷ

Example 3.2. The following matrix product does not exist

»

–

2 0 ´11
8 8 1
5 2 10

fi

fl

„

2 9
1 0

ȷ

.

Next, we will talk about scalar multiplication of matrices; in other words, we will about how to scale a
matrix by a number.

Scalar Multiplication

Definition 3.2. Let A be a matrix and c be any real number, then we define the scalar multiplication
of A by c to be

cA “ Ac “

»

—

—

—

–

ca11 ca12 . . . ca1n
ca21 ca22 . . . ca2n
...

...
. . .

...
cam1 cam2 . . . camn

fi

ffi

ffi

ffi

fl

It turns out that scalar multiplication, matrix multiplication, and matrix addition behave very well with
each other. We describe this behavior in the next proposition. However, before we do, we define some special
matrices for which it will be convinent to have notation for.

Zero Matrices and Identity Matrices

Definition 3.3. Let n be any counting number larger than zero. Consider n ˆ n matrices

»

—

—

—

–

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

fi

ffi

ffi

ffi

fl

“ 0n

»

—

—

—

—

—

–

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

fi

ffi

ffi

ffi

ffi

ffi

fl

“ In

.

We call 0n the n ˆ n zero matrix and In the n ˆ n identity matrix.

The identity matrix is particularly nice looking! It only has entries of 1 along what we call the diagonal.
We define diagonal more formally:
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The Diagonal of a Matrix

Definition 3.4. The diagonal of a square matrix A are the entries rAsi,i for all possible i.

If a square matrix has zero entries outside of the diagonal, we say that the matrix is a diagonal
matrix.

Warning: A non-square matrix cannot not be diagonal since there is not a nice notion of a diagonal for
it.

Remark: The matrix In is a diagonal matrix.

Example 3.3. The following matrix

»

–

1 0 0
0 2 0
0 0 3

fi

fl

is a diagonal matrix. However, the matrix

»

–

1 0 0 0
0 2 0 0
0 0 3 0

fi

fl

is not a diagonal matrix since it is not a square matrix and hence there is no nice notion of a diagonal.

Properties of Matrix Arithmetic

Proposition 3.2. Let A, B, and C be matrices whose sizes are compatible for the necessary matrix
operations below, and suppose that d and e are real numbers, then.

1. A ` B “ B ` A

2. A ` 0 “ B ` 0

3. pA ` BqC “ AC ` BC

4. CpA ` Bq “ CA ` CB

5. IA “ AI “ A

6. dpA ` Bq “ dA ` dB “ pA ` Bqd

7. pdeqA “ dpeAq

8. pd ` eqA “ dA ` eA

9. dpABq “ pdAqB “ ApdBq

These properties may or may not be surprising to you. However, it is beneficial to have be able to use
these fluently. They are extremely valuable, both in a theoretic and computational point of view.

Warning: Unlike numbers, matrix multiplication cares about order! That is to say that AB ‰ BA in
general! The following will be a homework problem

Exercise 3.1. Find an example of two matrices A and B, such that AB ‰ BA.
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Fun Fact: The above proposition tells us that the space of n ˆ n matrices with real entries
in R has a natural vector space structure (we haven’t talked about what this is yet, but we
will)!

Exercise 3.2. This one is a bit challenging! Show that if

„

a b
c d

ȷ

B “ B

„

a b
c d

ȷ

for all 2ˆ 2 matrices B, then A “

„

r 0
0 r

ȷ

for some r P R. Hint: set B equal to

„

1 0
0 0

ȷ

and see what this

tells you about a, b, c or d. Keep setting B to different types of matrices like this one to widdle down what
a, b, c, d are.

Example 3.4. We compute

»

–

1 2 7
0 0 1
1 0 6

fi

fl

¨

˝

»

–

2 4 0
1 1 0
2 0 7

fi

fl `

»

–

1 0 1
0 1 0
1 1 1

fi

fl

˛

‚“

»

–

1 2 7
0 0 1
1 0 6

fi

fl

»

–

2 4 0
1 1 0
2 0 7

fi

fl `

»

–

1 2 7
0 0 1
1 0 6

fi

fl

»

–

1 0 1
0 1 0
1 1 1

fi

fl

“

»

–

18 6 49
2 0 7
14 4 42

fi

fl `

»

–

15 9 8
1 1 1
7 6 6

fi

fl

“

»

–

33 15 57
3 1 6
21 10 48

fi

fl .

Can you think of another way we could have computed

»

–

1 2 7
0 0 1
1 0 6

fi

fl

¨

˝

»

–

2 4 0
1 1 0
2 0 7

fi

fl `

»

–

1 0 1
0 1 0
1 1 1

fi

fl

˛

‚?

Last, but certainly not least, lets talk about the powers of a square matrix!

Powers of a Square Matrix

Definition 3.5. For a square matrix A, we can take arbitrary powers of it. For notational purposes,
we write

Ak “ A ¨ ¨ ¨ ¨ ¨ A
l jh n

k´times

.

Exercise 3.3. Why can’t we do this for non-square matrices?
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Example 3.5. Let A “

„

1 2
7 1

ȷ

, we will compute A3.

A3 “

„

1 2
7 1

ȷ „

1 2
7 1

ȷ „

1 2
7 1

ȷ

“

„

15 3
14 15

ȷ „

1 2
7 1

ȷ

“

„

36 33
119 43

ȷ

Exercise 3.4. Let λ P R and A “

»

—

—

—

–

λ 0 0 . . . 0
0 λ 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ

fi

ffi

ffi

ffi

fl

. What is Ak for any k?

3.2 Transposes and Inverses

Sometimes, we would like to flip matrices and vectors on their sides. To this end, we make the following
definitions.

Transpose of a Vector

Definition 3.6. Let a “

»

—

–

a1
...
an

fi

ffi

fl

be a vector in Rn. The transpose of a is denoted by aT , and we set

aT “
“

a1 . . . an
‰

.

Transpose of a Matrix

Definition 3.7.
Let A “

“

a1 . . . an
‰

be an m ˆ n matrix. The transpose of A is denoted by AT and is created by
making the i-th column of A the i-th row of A for all columns. That is:

AT “

»

—

–

aT1
...
aTn

fi

ffi

fl

Remark 4. Let A be an m ˆ n matrix. The size of AT is n ˆ m

T

Example 3.6. e transpose of A “

„

1 2
1 7

ȷ

is

AT “

„

1 1
2 7

ȷ

.

Exercise 3.5. Let A “

„

a b
c d

ȷ

be an arbitrary 2 ˆ 2 matrix. When does AT “ A?
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Now we will analyze how transposes play with the operation of matrices we talked about in the last
section.

Proposition 3.3. Let A b have appropriate sizes for the following sums and producs. Then,

1. pAT qT “ A.

2. pA ` BqT “ AT ` BT .

3. For any c P R, we have pcAqT “ cAT .

4. pABqT “ BTAT .

Proof. The proofs of parts (a), (b), and (c) will be outlined in the homework. Part (d) is a bit harder,
so lets write it down here.
We prove (d). First note

rpABqT si,j “ rABsj,i “
ÿ

k

rAsj,krBsk,i

On the other hand,
rBTAT si,j “

ÿ

k

rBT si,kraT sk,j “
ÿ

k

rBsk,irAsj,k.

Therefore, rpABqT si,j “ rBTAT si,j for all i and j. Therefore pABqT “ BTAT , as desired.

Warning: In general pABqT is not equal to ATBT , as we will see in the following example.

Example 3.7. Let A “

„

1 2
3 1

ȷ

and B “

„

1 0
1 1

ȷ

. Then, AB “

„

3 2
4 1

ȷ

with transpose pABqT “

„

3 4
2 1

ȷ

. Moreover, AT “

„

1 3
2 1

ȷ

, and BT “

„

1 1
0 1

ȷ

. We then, see that

ATBT “

„

1 4
2 3

ȷ

‰ pABqT .

On the other hand

BTAT “

„

3 4
2 1

ȷ

“ pABqT .

3.2.1 Inverses

Now, lets turn our focus to inveres of matrices. As motivation for this, consider the set of numbers R. For
any r P R, there is another r´1 such that r ¨ r´1 “ 1 “ r´1r. For example 5 ¨ 1

5 “ 1 “ 1
5 ¨ 5. We say that r´1

is a multiplicative inverse of r.

It is natural to ask if matrices have inverses as well? Let’s re-frame the question in matrix language: A
square matrix A has and inverse and is said to be invertible if there is a square matrix C such that

CA “ In “ AC.
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We call C the inverse of A and denote C “ A´1. Warning: A priori we must check CA “ In and
AC “ In since matrix multiplication cares about order. However, it turns out in this case, CA “ In
is enough to conclude that C “ A´1. However, the easiest proof I know of this fact uses determinants, which
we will talk about soon. However, feel free to use the following exercise as fact. We will prove it later.

Exercise 3.6. If A and C are square matrices of size n, and CA “ In, prove that AC “ In and hence
C “ A´1. Hint: if CA

Unfortunately, while every nonzero real number has a multiplicative inverse, the same is not true for
matrices.

Example 3.8. Let A “

„

0 2
0 1

ȷ

. We will show that A has no inverse. Suppose for sake of

contradiction, it did, then there is a matrix C “

„

1 b
c d

ȷ

such that

CA “ I2 “ AC

Now,

CA “

„

0 2a ` b
0 2c ` d

ȷ

“

„

1 0
0 1

ȷ

This is a contradiction since 0 ‰ 1. Thus, no such matrix C exists. Hence, A is not invertible.

Example 3.9. The following matrices are invertible

„

1 0
0 1

ȷ

,

„

2 1
1 7

ȷ

, and

„

3 2
1 1

ȷ

. We could find

their inverses in a similar way as the above example. However, lets deter that and wait until we have
a more efficient method to find inverses.

Singular and Nons-singular

Definition 3.8. Let A be a square matrix. If A has an inverse, we say it is invertible (or non-
singular). If A does not have an inverse, we say that it is singular.

Typically it is very hard to check if an arbitrarily large matrix is invertible. However, there is a nice test
to see if a 2 ˆ 2 matrix is invertible or not.

Theorem 3.1. Let A “

„

a b
c d

ȷ

. A is invertible if and only if ad ´ bc ‰ 0; moreover,

A´1 “
1

ad ´ bc

„

d ´b
c a

ȷ

.

Proof. Outlined in Homework.
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Example 3.10. The matrix A “

„

1 2
3 5

ȷ

is invertible since 1 ¨ 5 ´ 2 ¨ 3 “ ´1. Moreover,

A´1 “

„

´5 2
3 ´1

ȷ

.

It turns out that invertible matrices behave well with many matrix operations that we have talked about.
We gather these properties in the next theorem.

Theorem 3.2. Let A and B be invertible matrices.

1. A´1 is invertible and in particular pA´1q´1 “ A.

2. AB is invertible with inverse pABq´1 “ B´1A´1.

3. AT is invertible with inverse pAT q´1 “ pA´1qT .

Proof. (a) and (b) are not terrible to prove, so I leave it to you as an exercise to do so. Let’s prove
pcq. To show that pAT q´1 “ pA´1qT , We need to show that AT ¨ A´1qT “ In and A´1qT ¨ AT “ In.
Using properteies of transpose we see that

AT ¨ pA´1qT “ pA´1AqT “ pInqT “ In.

Similarly

pA´1qT ¨ AT “ pAA´1qT “ ITn “ In.

Therefore, A´1qT “ pAT q´1, as desired.

Exercise 3.7. Come up with invertible matrices A and B, such that A ` B not invertible.

3.2.2 Connection to SLE’s

Why study inverses of matrices in the first place? An answer to this is the following theorem.

Theorem 3.3. Let A be the augmented matrix of some linear system and b P Rn. If A is invertible,
then Ax “ b has a unique solution, namely A´1b.

Proof. Since Ax “ b and A is invertible, we see that x “ A´1b.
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Example 3.11. In the example above we computed the inverse of the matrix A “

„

1 2
3 5

ȷ

to be

A´1 “

„

´5 2
3 ´1

ȷ

. We solve Ax “

„

2
0

ȷ

. We multiply both sides on the left by A´1

x “ A´1b “

„

´5 2
3 ´1

ȷ „

2
0

ȷ

“

„

´10
6

ȷ

.

It turns out that invertible matrices have a role to play when it comes to row operations. In particular
every row operation on an augmented matrix A (of a SLE) can be realized as EA, where E is an invertible
matrix. We will go into more detail about this below. Theoretically, this is extremely powerful (we will
see why); computationally, a little less so. Nonetheless having multiple view points on the same thing is a
worthwhile thing!

Elementary Matrices

Definition 3.9. There are three types of elementary matrices:

1. Si,j is the identity matrix with the i-th row and j-th row swapped.

2. Mc,i is the identity matrix with the i-th row multpiplied by a nonzer c P R.

3. Pc,i,j is the identity matrix with the pi, jq entry replaced with a c. Order matters here!

I don’t plan on using this notation all that much, but it’s nice to have some common notation that we
can all use, especially when the matrices are very large. You will notice that there is a shortcoming to this
notation: no where does it indicate the size of the matrix. I spent a while trying to come up with a clean fix
to this issue. Alas, it has bested me. If you have an idea for notation of elementary matrices that incorporate
their size, please let me know!

Example 3.12. Lets write down some elementary matrices of size four.

S2,3 “

»

—

—

–

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

fi

ffi

ffi

fl

M?
2,3 “

»

—

—

–

1 0 0 0
0 1 0 0

0 0
?
2 0

0 0 0 1

fi

ffi

ffi

fl

P´2,3,1 “

»

—

—

–

1 0 ´2 0
0 1 0 0
0 0 1 0
0 0 0 1

fi

ffi

ffi

fl

The next proposition explains how elementary matrices realize elementary row operations.
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Proposition 3.4. Let A be any matrix of size n. Then,

1. Si,jA is the matrix obtained by switching the i-th and j-th rows of A.

2. Mc,iA is the matrix obtained by multiplying the i-th column of A by a nonzero c P R.

3. Pc,i,jA is the matrix obtained by adding replacing the j-th row of A with cRi ` Rj , where Ri

is i-th row and Rj is the j-th row.

Proof. The proof is not that enlightning. Let’s see some examples instead! But first, an important
proposition.

Proposition 3.5. Elementary matrices are invertible.

Proof. The inverse of an elementary matrix E is the matrix that corresponds to undoing the row
operation dictated by E. Try to write the inverses down! Are they also elementary matrices?

Example 3.13. Lets put the augmented matrix A “

„

2 7 0
1 2 2

ȷ

into RREF by multiplying on

the left by elementary matrices. Let’s first describe the row operations we would use to compute the
RREF of A; this will tell us which elementary matrices to multiply by.

I am going to write out the row operations to get A into RRER but in practice we would write the
matrices to get to RREF and figure out the elementary matrices from that; I am just lazy and don’t
want to type out all of those matrices.

First, we will swap R1 and R2. Next, we will replace R2 with ´R1 ` R2. Next, we divide R2 by 1
3 .

Lastly, we replace R1 with ´2R2 ` R1. At the end of the day, when we translate this in terms of
elementrary matrices, we get

P´2,2,1M 1
3 ,2

P´1,1,2S1,2A “

„

1 0 14
3

0 1 ´4
3

ȷ

,

which is the RREF of A.

Doing row operations this way is rather tedious and annoying, so why would we consider these elementary
matrices. Dealing with matrix multiplication in an abstract/theoretical/algorithmic frame work can be easier
than describing row operations, especially in proofs, as we will now see.

Theorem 3.4. A size n matrix A is invertible if and only if A is row equivalent to In.

Proof. Proof deferred to next section.

You will recall at the beginning of the inverse section, we said that finding inverses is difficult. We will
talk about an algorithm to find inverses of a matrix, or to show that a matrix is not invertible.
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Algorithm for Finding A´1

Algorithm 3.1. Let A be an n ˆ n matrix. We determine if A´1 exists, and if so, what it is as
follows:

1. Place A and In side by side in a matrix

“

A In.
‰

2. Row reduce
“

A In.
‰

to something of the form

“

In B
‰

.

3. If the second step is not possible, then A is not invertible. If it is possible, then A is invertible
and A´1 “ A.

This algorithm works because the identity matrix is keeping track of the row operations we are using to
get the the identity. In particular, this is saying to get from A to In, we need to multiply A by B on the
left, since B is corresponds to the row operations we performed to get A row reduced to In

Let’s practice this!

Example 3.14. We will determine the inverse of the matrix A “

»

–

1 2 0
0 1 7
1 1 1

fi

fl by using the above

algorithm. With some love and care, we can row reduce

»

–

1 2 0 1 0 0
0 1 7 0 1 0
1 1 1 0 0 1

fi

fl

to

»

–

1 0 0 1 ´2 0
0 1 0 0 1 ´7
0 0 1 ´1 ´1 1

fi

fl .

Therefore A´1 “

»

–

1 ´2 0
0 1 ´7

´1 ´1 1

fi

fl.

3.3 Inverses in Disguise

It turns out that if a square matrix A of arbitrary size is invertible, then there is a plethora of information
we can extract in terms of the things we have talked about in Chapter Warning: the matrix must be
square so that we can talk about inverses. This section will be rather short, but its implications are
tremendous. So, take advantage of the lack of pages this section holds to really, and I mean really, internalize
and remember what the following theorem says. Before that, we develop some notation.

Notation 1. Lets say, for the giggles, that we have two statements a and b; for example, suppose statement
a says the matrix A is invertible, and statement b says that there is a matrix B such that BA “ I. We write
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a “ñ b to say statement a implies statement b. In our example, a “ñ b is the same thing as saying: if
A is an inevitable matrix, then there is a matrix B such that BA “ I. Leaving this example, sometimes,
we will be in a situation where a “ñ b and b “ñ a; rather than write this twice, we use the notation
a ðñ b.

The Inverses in Disguise Theorem

Theorem 3.5. Let A be a square matrix of size n. Then the following are equivalent.

1. A is an invertible matrix.

2. A is row equivalent to In.

3. A has n pivot positions.

4. The homogeneous equation Ax “ 0 has only the trivial solution.

5. The columns of A form a linearly independent set.

6. The non-homogeneous equation Ax “ b has a unique solution for each b P Rn.

7. The columns of A span Rn.

8. There is an n ˆ n matrix C such that CA “ In.

9. There is an n ˆ n matrix D such that AD “ In.

10. AT is an invertible matrix.

Proof. Rather than a formal proof, which would take a while, lets discuss why these are all equivalent. In
fact, we have seen some of these equivalences before!

1. 1 “ñ 8 and 1 “ñ 9 is immediate by definition of inverse.

2. 8 “ñ 4: If Ax “ 0, then by multiplying both sides of the matrix equation by C on the left, we obtain
x “ 0. Thus, Ax “ 0 has no nontrivial solutions.

3. 4 ðñ 5 follows by Theorem 2.6.

4. 3 ðñ 4: if A has n pivot positions, then it has no free variables, and so Ax “ 0 has no nontrivial
solutions. Conversely (going backwards), if Ax “ 0 has only the trivial solution, then A does not have
a free variable. Hence A has n pivot columns.

5. 2 ðñ 3: if A and In are row equivalent, then A has n pivot columns since A’s RREF is In. Conversely
(going backwards) if A has n pivot columns, then there is a leading one in every columns of the REF
of A. Hence, by using row operations, we can row reduce A to the identity matrix In.

6. 2 “ñ 1: If A is row equivalent to In, then there are Elementary matrices E1, . . . , Ek such that
E1 ¨ ¨ ¨Ek “ EA “ In, where we have set E “ E1 ¨ ¨ ¨Ek. Now, elementrary matrices are invertible and
products of invertible matrices are invertible, so E is invertible. Thus, A “ E´1In “ E´1. Since E´1

is invertible and E´1 “ A, we conclude that A is invertible.

7. 1 “ñ 6: As A is invertible it has a left inverse A´1. Thus, Ax “ b implies x “ A´1b.

8. 6 ðñ 7: this follows by Corollary 2.4.2.

9. 8 “ñ 6: multiplying both sides of Ax “ b by C on the left, we see that Inx “ Cb. Since Inx “ x,
this implies that x “ Cb. In other words Cb is a solution to Ax “ b.

10. 1 ðñ 10: This follows from Theorem 3.2 and Proposition ??.
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11. 9 “ñ 1: We assume there is a matrix D such that AD “ I. As 8 “ñ 1 and D has a multiplicative
left inverse A, then D is invertible. As D is invertible, multiplying both sides of the equation AD “ I
on the right by D´1 yields A “ D´1. Since D´1 is invertible by Theorem 3.2, we have that A is
invertible, as desired.

This is enough to conclude the proof of the theorem, but lets see why using a useful diagram of implications
based on what we did above:

9

7 6 1 8

10 2 3 4 5

Example 3.15. Determine if the following matrix is invertible by using the Inverses in Disguise
Theorem:

A “

»

–

1 1 1
0 0 4
0 0 1

fi

fl .

We could, of course, carry out an algorithm to find an inverse (or show it does not exist); however,
the beauty of the Inverses in Disguise Theorem is that we can use some of the ideas we have talked
about since the beginning of class to determine if a matrix is invertible! Notice that A is in RREF
and has 2 pivot columns. Since A doesn’t have 3 pivot columns, then A can’t be invertible by the
Inverses in Disguise Theorem! That was a lot faster than using an algorithm.

3.4 Linear Transformations and Matrices

Before we begin with the definition of a linear transformation (function), we define some notation and
terminology, that we will find convinent.

Function

Definition 3.10. A function from a set A to a set B, denoted f : A Ñ B, is a rule that assigns
every element to only one element of b. We call A the domain and B the codomain.

Range

Definition 3.11. Let f : A Ñ B be a function. For an element a P A, we say that fpaq is the image
of a under f . The set of all images of all elements of a is called the range of f and is denoted impfq

Since the beginning of the semester, we have been studying systems of linear equations in many guises
ways (matrix equations, vector equations, augmented matrices). We have even used linear systems to answer
questions about sets of vectors (e.g spanning, linear independence, linear dependence). This is an indication
that linear systems, in particular their solutions sets, have a powerful structure behind them. The purpose
of this section is to come up with a good notion of what it means to “map a solution set to another solution
set”. Why would we want to do this? In a very rough sense it gives us a way to compare information in one
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solution set to another: for example, we will use them to see whether they are the same, if one sits inside
another, or if one is ”larger” than another.

Let’s begin with the main question: What should a function (or map) between solution sets look like?
We are mathematicians, so we have the ability to declare what these maps are, but we must do so with some
care in mind. We need to make sure: a map between solution sets must preserve the “structure”
of solutions sets. In particular since adding rows and scalar multiples don’t change solution
sets, we would like maps between solution sets to

1. preserves addition,

2. and preserves scalar multiplication.

This leads us to make the following definition:

Linear Transformation

Definition 3.12. A map between T : Rn Ñ Rm is call a linear transformation if for all x,y P Rn

and k P R.

1. T px ` yq “ T pxq ` T pyq,

2. and T pkxq “ kT pxq.

As with any definition, lets look at an example.

Example 3.16. Let A “

„

1 2
0 1

ȷ

. Then, A defines a linear transformation TA : R2 Ñ R2 by

TA px1, x2q “

„

1 2
0 1

ȷ

¨

„

x1

x2

ȷ

.

For example, TAp1, 1q “

„

1 2
0 1

ȷ

¨

„

1
1

ȷ

“

„

3
1

ȷ

The following is probably one of my favorite exercises! In fact, it was a homework problem for my linear
algebra class 7 years ago!

Exercise 3.8. Let T : Rn Ñ Rm be any linear transformation. Show that T p0q “ 0 only by using the
definition of linear transformation.

Example 3.4 can be bootstrapped to give us many examples of linear transformation. Indeed given any
n ˆ m matrix A, we can define a linear transformation TA : Rm Ñ Rn by

TAppx1, . . . , xnqq “ A ¨

»

—

–

x1

...
xn

fi

ffi

fl

.

It turns out that all linear transformations are determined by a matrix; isn’t that neat? So, we know all the
different types of linear transformations since we are familiar with matrices!
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Theorem 3.6. Suppose that T : Rm Ñ Rn is a linear transformation, then T can be realized as
matrix multiplication by some n ˆ m matrix A, where A is constructed as follows: We let ei denote
the i-th column of the m ˆ m identity matrix. For each i,

T peiq “

»

—

—

—

–

a1,i
a2,i
...

an,i

fi

ffi

ffi

ffi

fl

.

Set

A :“
“

T pe1q ¨ ¨ ¨ T penq
‰

“

»

—

—

—

–

a1,1 a1,2 ¨ ¨ ¨ a1,n
a2,1 a2,2 ¨ ¨ ¨ a2,n
...

... ¨ ¨ ¨
...

am,1 am,2 ¨ ¨ ¨ am,n

fi

ffi

ffi

ffi

fl

.

Then, the linear transformation TA determined by A is exactly the linear transformation T . We call
A the standard matrix of T

Proof. Deferred. This is a particular example of something involving “basis”, kinda like a coordinate
system, which we have yet to talk about. So, I would rather wait to prove this more generally (it’s
much prettier).

Remark 5. Theorem 3.4 says that every linear transformation T : Rm Ñ Rn can be realized as multiplication
on the left by some n ˆ m matrix A (notice n and m switched roles!). On the other hand, every matrix
gives rise to a linear transformation! Thus, to study matrices is to study linear transformations, and vice
versa! Now, we can translate concepts and theorems about matrices to concepts and theorem about linear
transformations! I think that’s pretty neat. To sum up

Why bring up linear transformations? Just as we have been translating statements between SLE’s,
Matrices, and vectors, we can do the same with linear transformations. Before, we do this though, we define
a few more terms.
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Injective

Definition 3.13. We say that a function (or linear transformation) f : A Ñ B is injective if
whenever fpaq “ fpbq, then a “ b.

Example 3.17. The functions f : R Ñ R and g : R Ñ R defined by fpxq “ x and gpxq “ x3 are
injective.

Example 3.18. Not every function is injective! Indeed, f : R Ñ R be defined by fpxq “ x2 is not
injective since fp1q “ fp´1q “ 1, yet 1 ‰ ´1.

Surjective

Definition 3.14. We say that a function (or linear transformation) f : A Ñ B is surjective if for
every b P B, there is an a P A such that fpaq “ b. In other words the range of f is all of B.

Example 3.19. The functions f : R Ñ R and g : R Ñ R defined by fpxq “ x and gpxq “ x3 are
surjective.

Example 3.20. Not every function is surjective! Indeed, f : R Ñ R be defined by fpxq “ x2 is not
injective since the negative numbers are not in the range of f .

Bijective

Definition 3.15. We say that a function (or linear transformation) f : A Ñ B is bijective if it is
both injective and surjective.

Example 3.21. The functions f : R Ñ R and g : R Ñ R defined by fpxq “ x and gpxq “ x3 are
bijective.

Example 3.22. There are injective functions that are not bijective (i.e not surjective). For example,
the function f : R Ñ R defined by fpxq “

?
x is injective but not surjective.

On the other hand, the function g : R Ñ R defined by gpxq “
?
x fpxq “ px´1qpx´2qx “ x3´3x2`2

is surjective but not injective.

Now we are ready to apply this terminology to linear transformation and connect them to systems of
linear equation and matrix equations.



3.4. LINEAR TRANSFORMATIONS AND MATRICES 53

Theorem 3.7. Let T : Rm Ñ Rn be a linear transformation, given my multiplication by the n ˆ m
matrix A. Then, the following are equivalent:

1. T is injective.

2. The matrix equation Ax “ 0 has no non-trivial solution.

3. The columns of A are linearly independent.

The following is really just a restatement of Theorem 3.4, but we will record it anyway.

Theorem 3.8. Let T : Rm Ñ Rn be a linear transformation, given my multiplication by the n ˆ m
matrix A. Then, the following are equivalent:

1. T is not injective.

2. The matrix equation Ax “ 0 has a non-trivial solution.

3. The columns of A are linearly dependent.

Example 3.23. Determine if the linear transformation T : R3 Ñ R4 defined by

T ppx1, x2, x3qq “

»

–

1 0 0
0 1 0
0 0 1

fi

fl

»

–

x1

x2

x3

fi

fl ,

is injective. Since the matrix has exactly three pivot columns, by a Problem 2 in Worksheet 1 and
Theorem 2.6, we see that its columns are linearly independent!. Thus, by Theorem 3.4, we have that
T is injective. As an aside, T being injection means that the image of T is basically of copy of R3

sitting inside R4. We will explore this ”sitting inside” notion a little more in the next exercise.

Example 3.24. As we saw in Exercise 3.4, R3 sits inside R4. Intuitively, we should not expect a
linear transformation T : R4 Ñ R3 to EVER be injective. Lets look at an explicit example to see
why.
Consider the linear transformation T : R4 Ñ R3 defined by

T ppx1, x2, x3, x4qq “

»

–

2 3 9 1
1 6 5 2
0 2 1 0

fi

fl

»

—

—

–

x1

x2

x3

x4

fi

ffi

ffi

fl

.

Since there are more columns than rows, by Theorem 2.6, the columns of the matrix are not linearly
independent. Thus, by Theorem 3.4, T is not injective.

Since we are mathematicians, lets bootstrap Example 3.4 to show that any linear transformation T :
Rn Ñ Rm with n ą m cannot be injective.
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Proposition 3.6. Let T : Rn Ñ Rm be a linear transformation with n ą m. Suppose that T is
given by matrix multiplication via the m ˆ n matrix A. Then, T is not injective.

Proof. By Theorem 3.4, we only need to show that the columns of A are linearly dependent. Since
n ą m the number of columns of A is larger than the number of rows. Hence, by Theorem 2.6, the
columns of A are linearly dependent. By Theorem 3.4, T is not injective.

We can now add some things into our The Inverses in Disguise Theorem! I’ll copy them here for your
convenience.

Theorem 3.9. Let A be an n ˆ n matrix

1. A is an invertible matrix.

2. A is row equivalent to In.

3. A has n pivot positions.

4. The homogeneous equation Ax “ 0 has only the trivial solution.

5. The columns of A form a linearly independent set.

6. The non-homogeneous equation Ax “ b has at least one solution for each b P Rn.

7. The columns of A span Rn.

8. There is an n ˆ n matrix C such that CA “ In.

9. There is an n ˆ n matrix D such that AD “ In.

10. AT is an invertible matrix.

11. The linear transformation TA : Rn Ñ Rn given by multiplication by A is injective.

Let’s switch gears slightly to surjective linear transformations and what they tell us about matrix equa-
tions!

Theorem 3.10. Let T : Rm Ñ Rn be a linear transformation, given by multiplication by the
n ˆ m matrix A. Then, the following are equivalent:

1. T is surjective.

2. The matrix equation Ax “ b has a solution (is consistent) for every vector b P Rn.

3. The columns of A span Rn.

The following theorem is really just a restatement of Theorem 3.4, but we will write it down anyway!
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Theorem 3.11. Let T : Rm Ñ Rn be a linear transformation, given by multiplication by the nˆm
matrix A. Then, the following are equivalent:

1. T is not surjective.

2. The matrix equation Ax “ b does not have a solution (is consistent) for some vector b P Rn.

3. The columns of A do not span Rn.

Example 3.25. Let T : R3 Ñ R2 be the linear transformation given by matrix multiplication by
A, where

A “

„

2 1 1
1 2 0

ȷ

.

We will show that T is surjective. Since the echelon form of the augemented matrix rA | 0 is

„

1 2 0
0 ´1 1

ȷ

we see that the system of equations represented by A has one free variable. Hence, by Corollary 2.4.2,
the columns of A span R2. Moreover, by Theorem 3.4, we conclude that T is surjective.

Finally, we see what bijective linear transformations tell us about matrix equations! First, a definition.

Isomorphism

Definition 3.16. Let T : Rm Ñ Rn be a linear transformation (not just any function. If T is
bijective, then we say that T is an isomorphism. Note: all we are doing is giving bijectivity of linear
transformations a special name

Theorem 3.12. Let T : Rm Ñ Rn be a linear transformation, given by multiplication by the nˆm
matrix A. Then, the following are equivalent:

1. T is an isomorphism.

2. A is a square invertible matrix (note that this says m “ n).

3. The matrix equation Ax “ b has a unique solution for every vector b P Rn.

4. The columns of A span Rn and are linearly independent.

The following is just a restatement of Theorem 3.4.
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Theorem 3.13. Let T : Rm Ñ Rn be a linear transformation, given by multiplication by the
n ˆ m matrix A. Then, the following are equivalent:

1. T is not an isomorphism.

2. A is not a square invertible matrix (this includes the case if m ‰ n).

3. The matrix equation Ax “ b has does not have a unique solution for some vector b P Rn.

4. The columns A do not span Rn or are linearly dependent.

Example 3.26. Let T : R3 Ñ R3 be the linear transformation given by the matrix

A “

»

–

1 2 2
2 1 1
0 1 1

fi

fl .

Since columns 2 and 3 are the same, the columns of A are not linearly dependent. Hence, by Theorem
3.4, the map T is not an isomorphism!

3.5 Scaling, Reflections, Rotations, and Shears

In this section, we will continue our study of linear transformations. In particular, we will discuss special
types of linear transformations that ”act geometrically“, e.g scaling, reflections, rotations, ect... For these
we will restrict our attention to linear transformations domain and codomain are both R2. The physicists,
engineers, and other sciences, will likely get a lot of use from this section (though I promise nothing).

First, we focus on the case when T : R2 Ñ R2. We can (and will) think of T as acting on R2. In fact,
there is a rigorous notion of what it means for a special type of set called a group to act on a space! When our
space is Rn or even Cn (C is the complex numbers), much is known about how isomorphisms act; the study
of these is called representation theory of (this is something I am currently learning about)! We won’t dive
that deep into linear transformation, but we will draw some pretty pictures (though if you are interested, I
am happy to point you to some resources).

Scaling

Definition 3.17. The 2 ˆ 2 matrix that scales by a factor of k ą 0 is

„

k 0
0 k

ȷ

.
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Example 3.27. Consider the vector u “ p1, 3q:

.

The scaling matrix

„

2 0
0 2

ȷ

takes u to

„

2 0
0 2

ȷ „

1
3

ȷ

“ p2, 6q:

.

Scaling

Definition 3.18. The 2 ˆ 2 matrix that reflects across the x-axis is

„

´1 0
0 1

ȷ

.
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Example 3.28. Consider the vector u “ p1, 3q:

.

The matrix

„

´1 0
0 1

ȷ

takes u to

„

´1 0
0 1

ȷ „

´1
3

ȷ

“ p´1, 3q:

.

Reflection across y-axis

Definition 3.19. 2 ˆ 2 matrix that scales by a factor of k ą 0 is

„

1 0
0 ´1

ȷ

.
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Example 3.29. Consider the vector u “ p1, 3q:

.

The matrix

„

1 0
0 ´1

ȷ

takes u to

„

1 0
0 ´1

ȷ „

1
3

ȷ

“ p1,´3q:

.

Horizontal Shear

Definition 3.20. The 2 ˆ 2 matrix that horizontally by a factor of k ‰ 0 is

„

1 k
0 1

ȷ

.
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Example 3.30. Consider the vector u “ p1, 3q:

.

The matrix

„

1 2
0 1

ȷ

takes u to

„

1 2
0 1

ȷ „

1
3

ȷ

“ p7, 3q:

.

The matrix

„

1 ´2
0 1

ȷ

takes u to

„

1 ´2
0 1

ȷ „

1
3

ȷ

“ p´5, 3q:

.

Vertical Shear

Definition 3.21. The 2 ˆ 2 matrix that shears vertically by a factor of k ‰ 0 is

„

1 0
k 1

ȷ

.
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Example 3.31. Consider the vector u “ p1, 3q:

.

The matrix

„

1 0
2 1

ȷ

takes u to

„

1 0
2 1

ȷ „

1
3

ȷ

“ p1, 5q:

.

The matrix

„

1 0
´2 1

ȷ

takes u to

„

1 0
´2 1

ȷ „

1
3

ȷ

“ p1, 1q:

.
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Rotation Matrix

Definition 3.22. 2 ˆ 2 matrix that rotates by θ radians is

„

cospθq ´ sinpθq

sinpθq cospθq

ȷ

.

Example 3.32. Consider the vector u “ p1, 3q:

.

The matrix

„

cospπ{4q ´ sinpπ{4q

sinpπ{4q cospπ{4q

ȷ

takes u to

„

cospπ{4q ´ sinpπ{4q

sinpπ{4q cospπ{4q

ȷ „

1
3

ȷ

“ p ´2?
2
, 3?

2
q:

.

Reflection across y “ x

Definition 3.23. The 2 ˆ 2 matrix that reflects across the line y “ x is:

„

0 1
1 0

ȷ

.
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Example 3.33. Consider the vector u “ p1, 3q:

.

The matrix

„

0 1
1 0

ȷ

takes u to

„

0 1
1 0

ȷ „

1
3

ȷ

“ p3, 1q:

.

Reflection across y “ ´x

Definition 3.24. The 2 ˆ 2 matrix that reflects across the line y “ ´x is

„

0 ´1
´1 0

ȷ

.
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Example 3.34. Consider the vector u “ p1, 3q:

.

The matrix

„

0 ´1
´1 0

ȷ

takes u to

„

0 ´1
´1 0

ȷ „

1
3

ȷ

“ p´3,´1q:

.
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Determinants

4.1 What and Why are Determinants

The purpose of this section is to, hopefully, motivate the idea behind determinants, or at least convince
you that they are not coming at us from out of the blue! We will also define, in full generality, what a
determinant is.

For a moment, lets think of the real numbers as square matrices of size one. That is a real number s can
be thought of the matrix rss. We know that the number s is invertible if and only if s ‰ 0. So, for 1 ˆ 1
matrices, we set the determinant of rss to be detprssq “ s (this number determines whether or not rss is an
invertible matrix.

Next, lets explore square matrices of size two. We have seen that a square matrix

„

a b
c d

ȷ

is invertible if

and only if ad ´ cb ‰ 0. As the number ad ´ bc determines whether or not the a 2 ˆ 2 matrix is invertible,

lets see if we can somehow write this number as a expression of determinants of 1ˆ1 submatrices of

„

a b
c d

ȷ

.

Here we can see

a ¨ detprdsq ´ b ¨ detprcsq “ ad ´ bc.

We will set

det

ˆ„

a b
c d

ȷ˙

“ a ¨ rds ´ b ¨ ras “ ad ´ bc.

Visually, we should think that we are traveling along the first row of

„

a b
c d

ȷ

:

1. We start at a. Copy down a and multiply it by the determinate of the submatrix we get when we
ignore the row and column containing a. This is where the ac is coming from.

2. Next, travel along the first row to the b. Copy down the b and multiply it by the determinate of the
submatrix we get when we ignore the row and column containing b. This is where the bc is coming
from, though we need to multiply it by ´1 to get the ´bc

3. Ta-da, we have ad ´ bc.

Why go through this process of rewriting ad ´ bc in term of determinates of particular submatrices?
Well, it gives us a idea of what the determinant of square n ˆ n matrix should be! First, we develop a bit
of notation.
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Ai,j

Definition 4.1. Let A be any square matrix. We denote by Ai,j the square matrix obtained by
deleting the i-th row and j-th column of A. Warning: Do not confuse this with rAsi,j which is the
i, j-th entry of A.

Now, we are ready to define the determinate of a square matrix!

Determinate

Definition 4.2. Let A be a square matrix of size n. We (inductively) define the determinate of A
to be

detpAq “ rAs1,1 detpA1,1q ´ rAs1,2 detpA1,2q ` . . . p´1qn`1rAs1,n detpA1,nq

“

n
ÿ

j“1

p´1qj`1rAs1,j detpA1,jq

We call the expression sumn
j“1p´1qj`1rAs1,j detpA1,jq the cofactor expansion of A along the first row.

If we want a determinate to dettermine whether or not a matrix is invertible, we should see if this
definition does that (otherwise it wouldn’t be a good definition). We will soon see that a matrix A is
invertible if and only if detpAq ‰ 0, but before we do that, we will have to develope some tools. For now we
will content ourselves with seeing if our definition lines up with the determinant of a 2 ˆ 2 matrix.

Example 4.1.
We find the determinate of

A “

„

2 1
´1 ´1

2

ȷ

,

by using cofactor exapansion of A along the first row:

2 ¨
´1

2
´ p´1qp1q “ 0.

Note that we get the same answer if we use the ad ´ bc formula!

Let’s do a more interesting example!
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W

Example 4.2. find the determinate of the matrix

A “

»

–

1 0 2
2 3 0
1 0 0

fi

fl .

The cofactor expansion of A along the first row is

detpAq “ 1 ¨ det

ˆ„

3 0
0 0

ȷ˙

´ 0 ¨ det

ˆ„

2 0
1 0

ȷ˙

` 2 ¨ det

ˆ„

2 3
1 0

ȷ˙

“ 1 ¨ 0 ´ 0 ¨ 0 ` 2p´3q

“ ´6

One might ask, ”what is so special about the cofactor expansion along the first row? Why can’t we do
something similar along another row or even column?” The answer is: it doesn’t matter! We just need to be
a bit careful about signs though. We describe this in the nex theorem.

Theorem 4.1. Suppose that A is a square matrix of size n. Then,

detpAq “

n
ÿ

j“1

p´1qi`jrAsi,j detpAi,jq

for all rows i, and

detpAq “
ÿ

k “ 1np´1qk`jrAsk,j

for all columns j.

This Theorem says that we can travel across any row and column to find detpAq like we have done for
the first row! We will give these expressions a name

Cofactor Expansion

Definition 4.3. ix a row i of a square matrix A. The expression

n
ÿ

j“1

p´1qi`jrAsi,j detpAi,jq

is called the cofactor expansion of A along the i-th row. Now, fix a column j of A. The expression

ÿ

k “ 1np´1qk`jrAsk,j

is called the cofactor expansion of A along the j-th column.

The neat thing about this Theorem, is it can potentially make our lives easier when determining deter-
minates, as long as we choose to do a cofactor expansion along a row or column with many zeros!
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Example 4.3. We find the determinate of the matrix

A “

»

–

1928 2008 9039
0 1837 290
0 1 0

fi

fl .

This is a disgusting matrix, to find the determinate of using cofactor expansion along the first row.
Instead, lets be clever about which row or column we want to do a cofactor expansion along. Let’s
do column 1 (row 3 is also a good choice):

detpAq “ 1928 ¨ det

ˆ„

1837 290
1 0

ȷ˙

´ 0 detpA2,0q ` 0 detpA3,0q “ 1928 ¨ ´290.

We can use the same idea to find the determinants of a special class of matrices, called triangluar matrices.

Definition 4.4. A square matrix with all zero entries above the diagonal is called an lower triangular
matrix. A square matrix with all zero entries below the diagonal is called a upper triangular matrix

Theorem 4.2. The determinate of a lower or upper triangular matrix is the product of the entries
along the diagonal.

Proof. The proof involves a technique called induction. If you are familiar with induction, I encourage
you to try it!

Example 4.4. The determinate of the upper triangular matrix

»

—

—

—

—

–

1 82 290 902 290
0 2 92008 92 0
0 0 3 92 2232
0 0 0 4 209
0 0 0 0 5

fi

ffi

ffi

ffi

ffi

fl

is 1 ¨ 2 ¨ 3 ¨ 4 ¨ 5 “ 5! “ 120. You can also see this by doing a cofactor expansion along the first column.

Exercise 4.1. What is the determinate of a square matrix A that has a row or column of just zeros?

The following Theorem is very useful!
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Theorem 4.3. Let A and B be n ˆ n matrices. Then,

1. detpAq “ detpAT q

2. detpABq “ detpABq

Proof. We will not prove these in detail, but for those who are interested, they can both be prove my
induction and implementing cofactor expansion!

Exercise 4.2. For square matrices of the same size, say A and B, is it true that detpA`Bq “ detpAq`detpBq

4.2 Properties of Determinants

It turns out the determinants interact well with row operations, and we can use row operations on a matrix
to determine its determinant. However, things will not be as simple as we would hope. Ideally, we would
hope that if A and B are row equivalent, then detpAq “ detpBq, but this is not true in general. So, when
we do row operations on a matrix and want to use them to find determinants, we need to keep track of some
more information. We will describe how to do this now.

Row Operations and Determinants

Theorem 4.4. et A be a square matrix.

1. If a multiple of one row of A to another row of A to produce a matrix B, then detpBq “ detpAq.

2. If two rows of A are interchanged to produce B, then detpBq “ ´detpAq.

3. If one row of A is multiplied by K to produce B, then detpBq “ k detpAq.

Proof. Each of the items above can be realized as multiplication of A on the left by an elementary
matrix. In particular, we can write B “ EA for some elementary matrix E. As we shall see,
detpBq “ detpEAq “ detpEqdetpAq. If E “ Pc,i,j , as this is a triangular matrix, whose diagonal
consists of only 1’s, we have detpEq “ 1. This yields part (a).

If E “ Si,j , then one can show that detpEq “ ´1; this is a bit harder to see is true. Induction is the
best way to prove it, so if you know what that is, try it! If not, that’s okay; try seeing it is true for
matrices of size 2 and 3. This yields (b).

If E “ Cc,i, then detpEq “ c; this implies (c).

Before we see an example, we develope some convinent notation. If A “

»

—

–

a11 . . . a1,n
... . . .

...
an1 . . . ann

fi

ffi

fl

, then we

sometimes write

detpAq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 . . . a1,n
... . . .

...
an1 . . . ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.
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Example 4.5. We compute detpAq, where A “

»

—

—

–

2 ´8 6 8
3 ´9 5 10

´3 0 1 ´2
1 ´4 0 6

fi

ffi

ffi

fl

.

The idea is to keep track of the row operations we use to get A into REF, and then use the above
theorem.

Lets multiply the top row by 1
2 2; then,

1

2
detpAq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´4 3 4
3 ´9 5 10

´3 0 1 ´2
1 ´4 0 6

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Next, we do row replacements to get 0’s under the 1 in the first column. As, these do not change the
determinant, we have

1

2
detpAq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´4 3 4
0 3 ´4 ´2
0 ´12 10 10
0 0 ´3 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Next, we can add 4 times row to row 3; this does not change the determinant:

1

2
detpAq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´4 3 4
0 3 ´4 ´2
0 0 ´6 2
0 0 ´3 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Lastly, we multiply row 3 by ´1
2 and add to row 4; again, this does not change the determinant

1

2
detpAq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´4 3 4
0 3 ´4 ´2
0 0 ´6 2
0 0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

We can find the determinant of this new matrix since it is an upper triangular matrix.

1

2
detpAq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´4 3 4
0 3 ´4 ´2
0 0 ´6 2
0 0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ ´18.

Hence, detpAq “ ´36.

The following theorem utilizes how row operations interact with determinants.
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Theorem 4.5. A square matrix A is invertible is if and only if detpAq ‰ 0.

Proof. We have that A is invertible if and only if A is row equivalent to the identity matrix. Thus,
A is invertible if and only if there are elementary matrices E1, . . . , Em so that

E1 ¨ ¨ ¨EmA “ In

In particular, detpE1 ¨ ¨ ¨EmAq “ 1. We see this implies detpE1q ¨ ¨ ¨ detpEmqdetpAq “ 1. Thus,
detpAq ‰ 0.

This means that we can add another thing to our inverse in disguises theorem! Moreover, we can now
say that determinants determine when a square matrix is invertible!

Theorem 4.6. Let A be an n ˆ n matrix

1. A is an invertible matrix.

2. A is row equivalent to In.

3. A has n pivot positions.

4. The homogeneous equation Ax “ 0 has only the trivial solution.

5. The columns of A form a linearly independent set.

6. The non-homogeneous equation Ax “ b has at least one solution for each b P Rn.

7. The columns of A span Rn.

8. There is an n ˆ n matrix C such that CA “ In.

9. There is an n ˆ n matrix D such that AD “ In.

10. AT is an invertible matrix.

11. The linear transformation TA : Rn Ñ Rn given by multiplication by A is injective.

12. detpAq ‰ 0.

Example 4.6. The matrix A “

»

—

—

–

1 0 0 0
2 7 0 0
1 1 2 0
0 2 6 1

fi

ffi

ffi

fl

is invertible since detpAq “ 14 ‰ 0. However, the matrix B “

»

—

—

–

1 0 0 0
2 7 0 0
1 1 0 0
0 2 6 1

fi

ffi

ffi

fl

is not invertible since detpAq “ 0.
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Chapter 5

Vector Spaces

5.1 Vector Spaces

The time has come, we now study vector spaces. I am mathematically obligated to include the following
image:

Before we begin our study of vector spaces, we note that in our study of vectors in Rn, we have encountered
a vector space, namely Rn. If you recall, we had a list of properties of vectors of Rn, Proposition5.1, which
we copy down here for your convenience.

Proposition 5.1. Let a,b, and c be vectors in Rn and c, d P R. Then, the following hold:

a) a ` b “ b ` a. e) cpa ` bq “ ca ` cb “ pa ` bqc.
b) pa ` bq ` c “ a ` pb ` cq. f) pc ` dqa “ ca ` da.
c) a ` 0 “ 0 ` a “ a. g) cpdaq “ cda.
d) a ` p´aq “ ´a ` a “ 0. h) 1a “ a.

These properties are ones that we might take for granted, or even say they are “obvious”. It turns out
that there are other types of spaces, that are not Rn, that have all of the properties of Proposition 5.1; we
call these vector spaces.
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Vector Spaces

Definition 5.1. A vector space is a set V with an addition operation and scalar multiplication by
R operation that satisfies the following conditions: for all v, w, u P V and c, d P R, we must have

1. v ` w P V

2. c ¨ v P V

3. v ` w “ w ` v.

4. pv ` wq ` y “ v ` pw ` uq.

5. There exists an object 0 P V such that v ` 0 “ 0 ` v “ v.

6. v ` p´vq “ ´v ` v “ 0.

7. cpv ` wq “ cv ` cw “ pv ` wqc.

8. pc ` dqv “ cv ` dv.

9. cpdvq “ cdv.

10. 1v “ v.

Vectors

Definition 5.2. Let V be a vector space. We call the elements of V vectors Warning: We called
elements of Rn vectors. Not every vector space is made out of vectors from Rn. They can be a wide
variety of thing: function, polynomials, integrable functions, differentiable functions,... ect. We will
see examples below.

Before we see some interesting examples, we jot down a few remarks.

Remark 6. The notion of a vector space is quite abstract, so to keep ourselves grounded, we should think
of a vector space as a way to identify spaces that are similar to Rn. The reason that a vector space needs
to satisfy the 10 rules (or axioms) above is because Rn satisfies them; if we want to look for spaces that
behave like Rn, we should make sure the spaces we consider share many similar properties to Rn. However,
vectors in an abstract vector space do not need to look like n-tuples of real numbers, as we will
see below.

Remark 7. The scalars we have chosen come from R, and so the vector spaces we have defined are usually
called real vector spaces. However, they do not always need to come from R. We can have scalars coming
from C instead, or even Q! For now, we will only consider scalars coming from R; perhaps, later, we will
look at vector spaces with scalars from C, which we call complex vector spaces.

Remark 8. This last remark can be skipped, but if you are interested keep reading! Vector spaces can have
scalars coming from anything that is a field (roughly speaking, a field is a set with addition and multiplication
that behaves like R). There are even finite fields! We can also bootstrap the definition of vector space to
include scalars that do not come from fields, but instead, they come from rings (roughly speaking, a ring is
a set with addition and multiplication that behaves like Z). We call such things modules. Sadly, modules
over an arbitrary ring are not as nice as vector spaces over a field. However, the theory is very interesting!

Example 5.1. The space Rn is a vector space! In fact, we have shown that this is indeed the case
in Proposition 5.1.
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Example 5.2. The set of all functions with domain R and codomain R forms a vector space,
where addition is pointwise addition of functions, and scalar multiplication is scalar multiplication
of function. We denote this space by FunpRq. To show that FunpRq indeed forms a vector space, we
need to see that each of the ten axioms in the definition hold.

Let f, g, h P FunpRq and c, d P R.
f ` g P FunpRq is immediate.

cf P FunpRq is immediate.

f ` g “ g ` f follows because real numbers do not care about order of addition.

pf ` gq `h “ f ` pghq follows because real numbers do not care about the order in which we perform
addition.

Let 0 be the zero function; that is 0pxq “ 0 for all x P R. Then, f ` 0 “ f .

For each f P FunpRq, we define ´f to be the function that sends x P R to ´fpxq. It is easily verified
that f ` p´fq “ 0.

properties 7,8,9,10 follows by properties of real numbers.

This is a HUGE vector space; in fact it has infinite dimension. In the next example, we consider a
slightly smaller vector space.

Example 5.3. The set of all continuous function from R to R forms a vector space, where addition
is pointwise addition of functions and scalar multiplication is scalar multiplication of functions. We
denote this space by CpRq. Since CpRq sits inside of FunpRq all properties except 1,2, and 5 automat-
ically hold by the example above. The only things we need to check is properties 1, 2 and 5. These
follow, respectively, since sums of continuous functions are continuous and scalar multiplication of
continuous function are continuous (thanks Calc 1!). Moreover, 0 is a continuous function, so 5 is
satisfied. Hence, CpRq is a vector space Unfortunately, this vector space has infinite dimension too.

Example 5.4. The set of all polynomials in the variable x with coefficients in R form a vector
space, where addition and scalar multiplication are addition and scalar multiplication of polynomials,
respectively. We denote this space by Rrxs. Since Rrxs are functions from R to R, they sit inside
FunpRq. Therefore, all properties except 1,2, and 5 automatically hold by the example above. We
need only check properties 1, 2, and 5. These follow since addition of polynomials is a polynomial
and scalar multiplication of a polynomial is still a polynomial and 0 is a polynomial. Therefore, CpRq

is a vector space! Unfortunately, this vector space has infinite dimension, as well.
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Example 5.5. The set of all polynomial of degree less than or equal to n P N forms a vector
space, where addition and scalar multiplication are addition and scalar multiplication of polynomials,
respectively. We denote this space by Rrxsďn. Since Rrxsďn sits inside Rrxs properties 3 through 10
hold automatically since they hold for Rrxs. We need only check that 1, 2, and 5 hold. The addition
of two polynomials of degree less than or equal to n is also a polynomial of degree less than or equal
to n (there is no way this increases degree). Similarly scalar multiplication of a polynomial of degree
less than or equal to n is still a polynomial of degree less than or equal to n. Lastly, 0 is a polynomial
of degree 0 ď n. Therefore, Rrxsďn is a vector space. This vector space has dimension n!

As the examples above show, sometimes spaces that sit inside vector spaces are also vector spaces. We
call these subspaces. Moreover, we saw that the only thing we needed to check if a subset of a vector space
is also a vector space is conditions 1, 2, and 5. More rigorously:

Subspaces

Definition 5.3. Let V be a vector space and W Ď V (Ď means sits inside). We say that W is a
subspace of V if the following hold:

1. The zero vector of V is also in W .

2. For all w,w1 P W , we have that w ` w1 P W . We call this property closed under addition.

3. For all w P W and c P R, we have that cw P W . We call this property closed under scalar
multiplication.

To emphasize: if W is a subspace of a vector space V , then W is also a vector space.

Example 5.6. The following spaces are subspaces of each other of, as we’ve seen above:

Rrxsďn Ď Rrxs Ď CpRq Ď FunpRq.

Example 5.7. For every vector space V , we have that t0u Ď V is a subspace of V , where 0 is the
zero vector of V . We call this the zero subspace.

Example 5.8. The solution set to a homogenous system of linear equations in n variables is a
subspace of Rn.

Exercise 5.1. Show that the space of integrable functions is a subspace of FunpRq.

Exercise 5.2. Show that the space of differentiable functions is a subspace of FunpRq.

One might be tempted to think that every subset of a vector space containing 0 is a subspace. This is
not true. We demonstrate this through the examples below. Before we do this, we develop some convenient
notation.
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Notation 2. Often we have found the need to describe sets of objects. There are many ways to do this. One
can enumerate (or list) all the elements of a set; for example

t0, 1, 2, 3, 4, ..u.

However, sometimes we cannot enumerate our sets (in fact, we can’t do this for R)! To get around this we
use set-builder notation. Here’s how it works. Let T be a given set, we define

S “ tt P T | t satisfies property Pu

to be the set of elements of T that satsify property P. Of course this is only useful if we have a set T to
begin with, but this turns out to often be the case. You can think of the | as a symbol for “such that”. For
example,

tn P Z | n is evenu

is the set of all even numbers in Z. I strongly encourage you to understand this notation. It is extremely
clean and useful; it is very difficult to do modern mathematics without it!

Example 5.9. Consider the subset W :“ tp0, nq | n P Zu of R2. This is not a subspace since it is
not closed under scalar multiplication. For example, 1

2 ¨ p0, 1q “ p0, 1
2 q is not in W .

Example 5.10. The set of all polynomials of degree n is not subspace of Rrxs since the zero
polynomial is not in it.

Example 5.11. Any plane through the origin is a subspace of R3. However, every plane that does
not go through the origin is not a subspace of R3 (it doesn’t contain the zero vector/ origin).

Example 5.12. Anonempty solution set of a non-homogeneous system of equations in n variables
is not a subspace of Rn since it does not contain the zero vector.

The last two examples are quite sad, because they are still interesting spaces to study, and are, in fact,
very close to being vector spaces; the only condition they don’t satisfy is that they don’t contain the zero
vector. One way to think about them is that they are shifted vector spaces. E.g a plane not through the
origin can be shifted to be a plane through the orgin. This leads us to make the following definition

Definition 5.4. Let V be a vector space and W a subspace of V . Let c P R. The subset

W ` c “ tw ` c | w P W u

is called an affine subspace. Warning: W ` c is not a subspace in general. But it is related to a
subspace, namely W .
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We will likely explore affine subspaces later on in the course. For now, lets talk about how to get
a subspace from a vector space that contains predetermined (or selected vectors). First, we extedn the
definition of linear combination and spanning to an arbitrary vector space. The definitions are analagous to
the ones we have seen before, but let’s jot them down, so that we are all on the same page.

Linear Combination

Definition 5.5. Let x1, . . . ,xn be vectors in a vector space V and c1, . . . , cn P R. Then, we call

c1x1 ` . . . ` cnxn

a linear combination of the vectors x1, . . . ,xn with weights c1, . . . , cn P R

Often, we will want to consider all linear combinations of a set of vectors. To this end, we define the
span of a set of vectors.

Span

Definition 5.6. Let v1, . . . ,vn be vectors in a vector space Rn. We define the Span of v1, . . . ,vn to
be the set of all linear combinations of v1, . . . ,vn. Often, we will denote this set by Spanpv1, . . . ,vnq.

It turns out that for every vector space V and v1, . . . ,vn P V , then Spanpv1, . . . ,vnq is a subspace of V .
We encapsulate this fact in the following theorem.

Theorem 5.1. Let V be a vector space and v1, . . . ,vn vectors in V . Then, Spanpv1, . . . ,vnq is a
subspace of V

Proof. This follows because 0 P Spanpv1, . . . ,vnq and Spanpv1, . . . ,vnq is closed under addition and
scalar multiplication. To see this, let v “ c1v1 ` . . . ` c1vn and w “ d1v1 ` . . . ` dnvn be elements
in Spanpv1, . . . ,vnq, and r P R. Then,

v ` w “ pc1v1 ` . . . ` c1vnq ` pd1v1 ` . . . ` dnvnq “ pc1 ` d1qv1 ` . . . ` pcn ` dnqvn

and

rv “ rpc1v1 ` . . . ` c1vnq “ rc1v1 ` . . . ` rc1vn

are in Spanpv1, . . . ,vnq.

Spanning sets

Definition 5.7. For a vector space V and v1, . . . ,vn vectors in V , we call Spanpv1, . . . ,vnq the
subspace of V generated by v1, . . . , vn.

For a subspace W of V , we call tv1, . . . ,vnu a spanning set for W if Spanpv1, . . . ,vnq “ W .

The Theorem above can be useful in showing that certain subsets of a vector space are subspaces by
finding a generating set for them.
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Example 5.13. Let H be the set of all vectors of theform pa ´ eb, b ´ a, a, bq where A and b are
arbitary real numbers. Using our set-builder notation

H “ tpa ´ 3b, b ´ a, a, bq | a, b P Ru.

We show that H is a subspace of R4, we can of course check this by verifying properties 1, 2, and 5,
but instead lets show H is a subspace by finding a generating set for H. To to this, we use the skills
we learned when writing parametric vector equations; any arbitrary vector in H has the form

»

—

—

–

a ´ 3b
b ´ a
a
b

fi

ffi

ffi

fl

“ a

»

—

—

–

1
´1
1
0

fi

ffi

ffi

fl

` b

»

—

—

–

´3
1
0
1

fi

ffi

ffi

fl

.

This shows that H “ Span

¨

˚

˚

˝

»

—

—

–

1
´1
1
0

fi

ffi

ffi

fl

,

»

—

—

–

´3
1
0
1

fi

ffi

ffi

fl

˛

‹

‹

‚

. Hence, by our theorem above, H is a subspace of R4.

The following example is a type of problem we’ve done before; it is just phrased differently.

Example 5.14. Let v1 “

»

–

1
´1
´2

fi

fl, v2 “

»

–

5
´4
´7

fi

fl, v3 “

»

–

´3
1
0

fi

fl, and b “

»

–

´4
3
h

fi

fl be vectors in R3.

For which values of h is b in the subspace of R3 spanned by v1, v2, and v3? The difference here from
what we’ve seen before is that we have used the terminology subspace rather than Spanpv1,v2,v3q.
Since we have seen things like this before, I leave the rest of the example to you to solve.

Exercise 5.3. Find a spanning set for Rrxsďn, and show that your set indeed spans Rrxsďn

5.2 Introduction to Dimension

In this section, we finally define what the dimension of a vector space is, and show that the dimension of Rn

is indeed n. However, to do so, we must introduce the concepts of linear independence and bases for vector
spaces. We have seen linear independence before for the case of the vector space Rn; much like spanning,
the definition of linear independence for an arbitrary vector space is analagous to the definition we have for
Rn.

Linear Independence

Definition 5.8. et V be a vector space. We say that the vectors a1, . . . ,an P V are linearly
independent if the only solution pc1, . . . , cnq to the vector equation

c1a1 ` c2a2 ` . . . cnan “ 0

is pc1, c2, . . . , cnq “ 0.
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Linear Dependence

Definition 5.9.
Let V be a vector space. We say that the vectors a1, . . . ,an are linearly dependent if the vectors
a1, . . .an are not linearly independent. In other words, there are scalers c1, . . . , cn such that ci ‰ 0
for some i, and

c1a1 ` c2a2 ` . . . cnan “ 0.

For abstract vector spaces, we cannot always use matrices (in an obvious way) to determine whether or
not a set of vectors is linearly independent or dependent. The following example illustrates this.

Example 5.15. Let fpxq “ sinpxq and gpxq “ cospxq. Consider f and g as vectors in CpRq. The
set vectors f, g are linearly dependent in CpRq since one is not a scalar multiple of another. Here’s
how to show linear independence algebraically: suppose c1, and c2 are scalars such that

c1 sinpxq ` c2 cospxq “ 0

for all x P R. Setting x “ 0 yields c2 cospxq “ 0. Therefore, c1 sinpxq “ 0 for all x P R. Set x “ π{2,
then c1 “ 0. Hence, f and g are linearly independent.

Example 5.16. Let fpxq “ sinp2xq and gpxq “ sinpxq cospxq. Consider f and g as vectors in CpRq.
Since sinp2xq “ 2 sinpxq cospxq by trigonomoetry, we see that

sinp2xq ´ 2 sinpxq cospxq “ 0.

Therefore, f and g are linearly dependent.

Example 5.17. Let f “ x g “ 1 and h “ 7x´10 be elements in the vector space Rrxs. The vectors
f, g, h are linearly dependent since

7f ´ 10g “ h “ñ 7f ´ 10g ´ h “ 0.

The following Theorem captures a phenomena demonstrated in the examples above (we’ve also seen this
in the case of Rn)

Theorem 5.2. Let V be a vector space. The vectors v1, . . . , vn of V are linearly dependent if and
only if there is a vk among the list v1, . . . , vn such that vk is a linear combination of the remaining
vi. Warning: Not every vector in the list v1, . . . , vn satisfies the role of vk, much like in the Rn case.
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Basis

Definition 5.10. Let V be a vector space. A set of vectors B “ tv1, . . . , vnu forms a basis for V if
the following are true:

1. The set of vectors B spans V

2. The set of vectors B are linearly independent.

A good way of thinking of this definition is that a basis is a set of vectors that span the entire
space in a minimal way.

Remark 9. Given a vector space V , if B and C are bases for V , then it is not true that B “ C in general.
Another way of saying this: a basis for a vector space is not unique.

Example 5.18. Let v1

»

–

1
2
0

fi

fl, v2 “

»

–

3
2
2

fi

fl, and v3 “

»

–

1
1
1

fi

fl be vectors in R3. We show that v1,v2, and

v3 forms a basis for R3. To do this, we need to shwo that this set of vectors spans R3 and is linearly
independent. We can check each, one at a time, but a fast way to do it in this case is to use our
inverses in disguise theorem (this is a square matrix). I will leave it to you to verify that the matrix

»

–

1 3 1
2 2 1
0 2 1

fi

fl

is row equivalent to the identity matrix. Hence, by our inverses in disguise theorem the columns of
A, which are v1,v2, and v3, are linearly independent and span R3. Therefore, v1,v2, and v3 forms
a basis for R3.

The vectors e1 “

»

–

1
0
0

fi

fl, e2 “

»

–

0
1
0

fi

fl, and e3 “

»

–

0
0
1

fi

fl. Since matrix whose columns are e1, e2 and e3

is the identity matrix, which is invertible. Hence, e1, e2, e3 are linearly independent and span R3,
implying they form a basis for R3.

Definition 5.11. Consider the vector space Rn. The vectors

e1 “

»

—

—

—

—

—

—

—

–

1
0
0
...
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, e2 “

»

—

—

—

—

—

—

—

–

0
1
0
...
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, . . . , en “

»

—

—

—

—

—

—

—

–

0
0
0
...
0
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

form a basis for Rn. We call this basis the standard basis for Rn. We also call ei the i-th standard
vector of Rn
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Theorem 5.3. Let V be a vector space. Let S “ tv1, . . . ,vnu, and set H “ SpanpSq.

1. (Cut Down): Suppose one of the vectors in S, say vk, is a linear combination of the remaining
vectors of S. Set S1 equal to the set S without vk. Then, SpanpSq “ H “ SpanpS1q.

2. (A maximal cut down): If H ‰ 0, some subset of S is a basis for H.

Proof. Omitted.

Remark 10. Another way to interpret this theorem is that for any spanning set, we can cut it down
(if necessary) into a basis.

Theorem 5.4. Let V be a vector space and W a subspace of V with basis S. Then, there is a basis
of V , say S1, that contains S.

Proof. Ommited.

Remark 11. The proofs above are omitted as I think it is better to get some intuition rather than seeing
how the proof works. If you are interested in seeing a proof of these facts, feel free to come to office hours,
or try proving it on your own!

Let’s see how the above theorem works!

Example 5.19. Let v1 “

»

–

1
2
3

fi

fl, v2 “

»

–

1
0
0

fi

fl, and v3 “

»

–

0
2
3

fi

fl be vectors in R3. Notice that

v1 “ v2 ` v3. Then, Spanpv1,v2,v3q “ Spanpv2,v3q. We can’t chop this down any further since v2

and v3 are linearly independent. Hence, tv1,v2u forms a basis for the subspace of R3 generated by
v1,v2p, and v3q.

Example 5.20. We will find a basis for the subspace, which we will call W , of R3 spanned by

v1 “

»

–

1
0
0

fi

fl ,v2 “

»

–

1
1
1

fi

fl ,v3 “

»

–

0
1
0

fi

fl ,v4 “

»

–

10
1
0

fi

fl. First, we note that this set is linearly dependent since

there are more than 3 vectors. To begin, we find a dependence relation among these vectors. One is

9v1 ` v3 “ v4.

Therefore, the span of v1,v2,v3 is W . One can check that v1,v2, and v3 are linearly independent,
as well; therefore, they also form a basis for W .

Exercise 5.4. Show that the subspace W in the example above is R3. Hint: We have done things like this
before but called it span instead of subspace.

The following theorem is analogous to Theorem 2.6, except it applies to all vector spaces, not just Rn.
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Theorem 5.5. Let V be a vector space with a basis B “ tv1, . . . ,vnu, then any set in V containing
more than n vectors must be linearly dependent.]

Proof. Suppose C “ tu1, . . . ,upu is a set of vectors in V with p ą n. Assume that

c1u1 ` . . . ` cpup “ 0.

Since B is a basis for V (and hence spans), for each i “ 1, . . . , p, there exists scalars si,1, . . . , si,n such
that

ui “ si,1v1 ` . . . si,nvn.

Substituting this in for each ui yields,

c1p
ÿ

j

s1,jvjq ` . . . cpp
ÿ

j

sn,jvjq “

p
ÿ

j

cjs1,jv1 ` . . . `

p
ÿ

j

cjsn,jvn “ 0.

Since B is a basis, we have that
řp

j cjsi,j “ 0 for all i. This implies we have a homogeneous matrix
equation

»

—

—

—

–

s1,1 s1,2 . . . s1,p
s2,1 s2,2 . . . s2,p
...

... . . .
...

sn,1 sn,2 . . . ss,p

fi

ffi

ffi

ffi

fl

»

—

—

—

–

c1
c2
...
cp

fi

ffi

ffi

ffi

fl

“ Ac “ 0.

Since p ą n, by Theorem 2.6, we have that the columns of the matrix above are linearly defpendent;

hence there exists pd1, . . . , dpq with some di ‰ 0, such that A

»

—

–

d1
...
dp

fi

ffi

fl

“ 0. By working backwards, we

see that these same di yield

d1u1 ` . . . ` dpup “ 0.

As at least one di ‰ 0, we have that u1, . . . ,up are linearly dependent, as needed.

Now we are ready to see that all basis of a vector space have the same number of elements!

Theorem 5.6. If a vector space V has a basis of n vectors, then every basis of V must consist of
exactly n vectors.

Proof. Suppose that B is a basis for V consisting of n vectors. Assume that C is another basis for V ;
we will show that C has n vectors. As C is linearly independent, then by Theorem 5.2, since B has n
elements C has no more than n vectors. On the flip side, since B is linearly independent and C is a
basis for V , then by Theorem 5.2 the number of elements of B cannot exceed the number of elements
of C. In other words, the number of elements of C is at least n. Since it is both at most and at least
n, we see that C has n vectors.
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Theorem 5.2 allows us to make the following definition.

Dimension

Definition 5.12. Let V be a vector space. If V has a finite basis of size n, then we say V is
finite-dimensional with dimension n. If V cannot be spanned by a finite set (e.g CpRq) we say that
V is infinite-dimensional

Example 5.21. We have seen that the set of vectors te1, . . . , enu in Rn forms a basis for Rn. Hence,
the dimension of R is n.

Example 5.22. Let v1 “

»

–

1
2
3

fi

fl, v2 “

»

–

1
0
0

fi

fl, and v3 “

»

–

0
2
3

fi

fl be vectors in R3. Notice that

v1 “ v2 ` v3. We saw in Example 5.2 that tv1,v2u forms a basis for the subspace of R3 generated
by v1,v2p, and v3q. Hence the dimension of this subspace is 2.

Exercise 5.5. Find bases for Rrxsď1, Rrxsď2, and Rrxsď3 and determine the dimension of each of these
vector spaces. Do you have a guess of what the dimension of Rrxsďn for any n?

Proposition 5.2. Let V be a finite dimension vector space, say dimpV q “ n. Suppose that W is a
subspace of V . Then dimpW q ď dimpV q. If W ‰ V , then dimpW q ă dimpV q.

Proof. IfW “ V , then dimpV q “ dimpW q. Suppose thatW ‰ V and assume, for sake of contradiction
that dimpW q ą dimpV q. Then any basis B for W has size bigger than n. By Theorem ??, we build a
basis C for V that contains B as a subset. However, this implies that dimpV q ě dimpW q ą dimpV q.
This implies that dimpV q ą dimpV q, which cannot happen. Thus, dimpW q ă dimpV q by way of
contradiction.

We end this section by introducing another type of vector space that is closely related to Rrxsďn. This
vector space comes up in higher mathematics (even calc 3 a bit)! First, we define some terminology to make
sure we are all on the same page.

Definition 5.13. Let x1, x2, . . . xm be any number of variables (e.g x, y, z). The vector space
Rrx1, x2, . . . , xms is the space of all polynomials in the variables x1, x2, . . . , xm and with coefficients
in R.

Example 5.23. The polynomials 5x ` y ´ 1, 4xy ` y2x ` 2z3, and 2x109y12 ´ z2x ´ x2z ´ 12 are
elements of Rrx, y, zs. Note that even though 5x ` y ´ 1 does not contain a z variable, it still lives
inside Rrx, y, zs since we never said all variables have to occur in the polynomial.



5.2. INTRODUCTION TO DIMENSION 85

Definition 5.14. Let x1, . . . , xm be variables. We say that a polynomial in Rrx1, . . . , xms is a
monomial if it is of the form

rxa1
1 xa2

2 ¨ ¨ ¨xan
m ,

where each ai is a non-negative integer, and r P R. Furthermore, we define the degree of a monomial
mpx1, . . . , xnqrxa1

1 xa2
2 ¨ ¨ ¨xan

m to be
ř

i ai. We denote this by

degpmpx1, . . . , xnq “
ÿ

i

ai.

Example 5.24. The polynomial 3x2 ` y2 P Rrx, ys is not a monomial (we can’t be adding terms).
The polynomial 2x4y1z4w10 in Rrx, y, z, ws is a monomial of degree 4 ` 1 ` 4 ` 10 “ 19.

Definition 5.15. Let p “ ppx1, . . . , xmq be any polynomial in Rrx1, . . . , xns. We say that the degree
of p is the largest degree of the monomials that make up p. We denote the degree of p by degppq

Example 5.25. The polynomial p “ x2 ` 7y2z2 in Rrx, y, zs has degree 4. The polynomial
q “ x7 ` x2y2z3 is 7.

Now we are ready to define vector spaces that are similar to Rrxsďn.

Definition 5.16. Let x1, . . . , xm be variables. We define Rrx1, . . . , xmsďn to be the set of all
polynomials in Rrx1, . . . , xms that have degree less than or equal to n.

Proposition 5.3. The space Rrx1, . . . , xmsďn is a vector space, where addition and scalar multi-
plication are addition and scalar multiplication of polynomials, respectively.

Proof. We only need to show it is a subspace of Rrx1, . . . , xms. Two polynomials of degree less than
or equal to n sum to a polynomial of degree less than or equal to n (degpf`gq ď maxtdegpfq,degpgqu.
Similarly scalar multiplication of a polynomial by r P R keeps the degree the same if r ‰ 0, and takes
the degree to 0 if r “ 0.

Exercise 5.6. Can you think of a basis for Rrx1, . . . , xmsďn. Hint: monomials seem to make up the
polynomials...
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The dimension of Rrx1, . . . , xmsďn is slightly harder to find than the dimension of Rrxsďn. One first
observes that the set of all monomials form a basis for Rrx1, . . . , xmsďn involves a counting technique called
“Stars and Bars”. Since this is beyond the scope of the course (and my counting abilities), we won’t talk
about it. However, we will at least write down a formula for the dimension (we just won’t prove it).

Proposition 5.4. Let x1, . . . , xm be variables and let n be any positive integer. Then,

dimpRrx1, . . . , xmsďnq “

ˆ

m ` n

n

˙

“
pm ` nq!

m!n!
.

5.3 Return of the Linear Transformations

Linear Transformation

Definition 5.17. Let V and W be vector spaces (not necessarily Rn). A linear transformation from
V to W is a function T : V Ñ W such that

1. T pv1 ` v2q “ T pv1q ` T pv2q for all v1,v2 P V .

2. T pkvq “ kT pvq for all v P V and k P R.

Example 5.26. Let V “ R4 and W “ R5. Consider the function T : R4 Ñ R5 given by

T pxq “

»

—

—

—

—

–

1 2 0 2
1 2 1 6
0 1 3 5
1 1 1 1
2 4 3 1

fi

ffi

ffi

ffi

ffi

fl

¨ x.

We have seen before that this is a linear transformation (in the realm of Rn spaces). They are also
linear transformations in the sense of Definition 5.3- in fact, the definition is really not different than
the one we have seen previously; this one is just more general as it incorporates any pair of vector
spaces.
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Example 5.27. Consider the space of differentiable function, denoted DiffpRq and the space of
functions form R Ñ R, denoted FunpRq. We define the funtion (or map)

D : DiffpRq Ñ FunpRq

by Dpfq “
df
dx . The map D is a linear function. Indeed, by what we have learned in Calculus 1, we

have

Dpf ` gq “ Dpfq ` Dpgq,

and

Dpcfq “ cDpfq

for all c P R and f, g P DiffpRq. Warning: You might be wondering why the codomain of D is
FunpRq and not DiffpRq. It turns out that the derivative of a differentiable function does not need to
be continuous (kinda wacky, right)? Can you think of an example of a differentiable function whose
derivative is not continuous?

Example 5.28. Consider the vector space of differentiable functions, which we will denote, DiffpRq.
Let a P R. Define the function

d

dx

ˇ

ˇ

ˇ

ˇ

x“a

: DiffpRq Ñ R

by d
dx

ˇ

ˇ

x“a
pfq “ f 1paq for all f P DiffpRq. We show that d

dx

ˇ

ˇ

x“a
is a linear transformation. Let

f, g P DiffpRq and k P R. Then:

d

dx

ˇ

ˇ

ˇ

ˇ

x“a

pf ` gq “ pf ` gq1paq “ f 1paq ` g1paq “
d

dx

ˇ

ˇ

ˇ

ˇ

x“a

pfq `
d

dx

ˇ

ˇ

ˇ

ˇ

x“a

pgq

d

dx

ˇ

ˇ

ˇ

ˇ

x“a

pkfq “ pkfq1paq “ kf 1paq “ k
d

dx

ˇ

ˇ

ˇ

ˇ

x“a

pfq.

Therefore d
dx

ˇ

ˇ

x“a
is linear transformation.
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Example 5.29. Consider the vector space of integrable function on ra, bs, which we denote by
Intpra, bsq. Define the function

Ira,bs : Intpra, bsq Ñ R.

by Ira,bspfq “
şb

a
f dx. The function Ira,bs is a linear tranformation. Indeed from Caluclus 1/2, we

know that

ż b

a

f ` g dx “

ż b

a

f dx `

ż b

a

g dx,

and

ż b

a

cf dx “ c

ż b

a

f dx

for all c P R and f, g P IntpRq

Example 5.30. Let Rrys and Rrx, ys denote the vector space of polynomials in the variable y and
variables x, y, respectively. Define the map

T0 : Rrx, ys Ñ Rrxs

by T0pfpx, yqq “ fp0, yq. For example, T0px2y`2y7px´1qq “ ´2y7. This is a linear transfomration. Indeed,
suppose that f, g P Rrx, ys and

As the above examples show, there are many types of linear transformations that are very interesting.
Indeed, two of the ones we have seen D, and Intra,bs are ones that you have spent a year studying at one
point. Thus, it might behoov us to study linear transformations in more detail, so that we can convert
information gleaned by linear algebra to say something concrete and useful about the vector spaces we are
studying. To achieve this, we begin studying the null Space and the image Space of a linear transformation.
Roughly speaking, the null space tells us information about how a linear transformation interacts with our
domain, and the image space tells us information about how the linear transformation interacts with the
codomain.

Null Space/ Kernel

Definition 5.18. Let T : V Ñ W be a linear transformation of vector spaces. The Null space of T
is the set

NullpT q “ tv P V | T pvq “ 0u.

Sometimes, people call the null space of T , the kernel of T . Sometimes, I might do this as well. This
is dentoted

kerpT q “ NullpT q “ tv P V | T pvq “ 0u.

In short, think of null space and kernel as synonyms.
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Proposition 5.5. Let T : V Ñ W be a linear transformation of vector spaces. Show that T p0q “ 0.

Proof. Since T is a linear transformation,

T “ p0q “ Tp0 ´ 0q “ Tp0q ´ Tp0q “ 0.

Proposition 5.6. Let T : V Ñ W be a linear transformation of vector spaces. The kernel of T is a
subspace of V .

Proof. We will prove this by using the subspace criteria.
1) We note that T p0q “ p0q by Proposition 5.3.

2) Let v and v1 be in kerpT q; this means that T pvq “ 0 and T pv1q “ 0. We will show that T pv`v1q “ 0.
Then, since T is a linear transformation

T pv ` v1q “ T pvq ` T pv1q “ 0 ` 0 “ 0.

Therefore, v ` v1 P kerpT q.
3) Let v P V and c P R. This means that T pvq “ 0. Then, since T is alinear transformation

T pcvq “ cT pvq “ 0 ¨ 0 “ 0.

Hence, cv P kerpT q.

By the subspace criteria, we see that kerpT q is a subspace of V .

As the next example shows, we have worked with kernels of linear transformations before!
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Example 5.31. We will find the kernel of the linear transformation T : R3 Ñ R2 defined by

T pxq “

„

1 2 3 0
1 0 2 0

ȷ

¨ x.

First, we ask ourselves, ”what does it mean for v to be in kerpT q?” It means that T pvq “ 0. Using
our explicit linear transformation this translates to

T pvq “

„

1 2 3 0
1 0 2 0

ȷ

¨ v “ 0.

This is a homogeneous system! The solution set will is precisely kerpT q, and we’ve found solution
sets before. Skipping some steps, we have a row reduction:

„

1 2 3 0 | 0
1 0 2 0 | 0

ȷ

Ñ

„

1 0 2 0 | 0
0 1 1

2 0 | 0

ȷ

.

The solution set can be described in parametric vector form as

»

—

—

–

v1

v2

v3

v4

fi

ffi

ffi

fl

“ s

»

—

—

–

´2
´1
2
1
0

fi

ffi

ffi

fl

` t

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

.

Therefore,

kerpT q “

$

’

’

&

’

’

%

s

»

—

—

–

´2
´1
2
1
0

fi

ffi

ffi

fl

` t

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s, t P R

,

/

/

.

/

/

-

.

Example 5.32. Let a P R. Consider the linear transformation d
dx

ˇ

ˇ

x“a
pfq. We will describe it’s

kernel. For a function in DiffpRq to be in ker
`

d
dx

ˇ

ˇ

x“a

˘

means that

d

dx

ˇ

ˇ

ˇ

ˇ

x“a

pfq “ f 1paq “ 0.

Therefore, ker
`

d
dx

ˇ

ˇ

x“a

˘

is the set of all differentiable functions that have a critical value at x “ a.
More precisely

ker

ˆ

d

dx

ˇ

ˇ

ˇ

ˇ

x“a

˙

“ tf P DiffpRq | f has a critical value at x “ au.

Example 5.33. Consider the linear transformation d
dx : DiffpRq Ñ FunpRq. We will describe it’s

kernel. For a function f P DiffpRq to be in ker
`

d
dx

˘

, we have df
dx “ 0. Therefore,

ker

ˆ

d

dx

˙

“ tf P DiffpRq | f 1 “ 0u “ tf “ c | c P Ru.
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Image Space

Definition 5.19. Let T : V Ñ W be a linear transformation of vector spaces. The image space of
T , denoted impT q, is defined to be the image of T . In other words

impT q “ tT pvq P W | v P V u.

Proposition 5.7. Let T : V Ñ W be a linear transformation of vector spaces. Then, impT q is a
subspace of W .

Proof. We will prove this by using the subspace criteria.
1) Since T p0q “ 0 by Proposition 5.3, we see that 0 P impTq.

2) Let w,w1 P impT q. This means that there are v and v1 in V such that T pvq “ w and T pv1q “ w1.
Since T is a linear transformation T pv ` v1q “ T pvq ` T pv1q “ w ` w1. Therefore, w ` w1 P impT q.

3) Let w P impT q and c P R. This means that there is a v such that T pvq “ w. Since T is a linear
transformation, we have that T pcvq “ cT pvq “ cw. Thus, cw P impT q.

By the subspace criteria, we have that impT q is a vector space.

Given a linear transformation T : V Ñ W of vectors spaces, as kerpT q and impT q are vector spaces, we
can talk about their dimensions. Since, these are special subspaces associated to T , we give these dimensions
special names.

Definition 5.20. Let T : V Ñ W be a linear transformation. We call dimpkerpT qq the nullity of T ,
which we denote as nullitypT q. We call dimpimpT qq the rank of T , which we denote as rankpT q.

Given a linear transformation of vector spaces, say T : V Ñ W , there is a beautiful relationship between
dimpV q,nullityT, and rankT . This relationship is dubbed The Rank-Nullity Theorem. First we prove a
proposition.
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Proposition 5.8. Let T : V Ñ W be a linear transformation of finite dimensional vector spaces.
Let S1 “ tv1, . . . ,vsu be a basis for kerpT q. By Theorem 5.2, there is a basis S “ tv1, . . . ,vku of V
that contains S1. Then, U “ tT pvs`1, . . . ,vku is a basis for impT q.

Proof. First, we show that T pUq spans impT q. To this end, let w P impT q, then there is a v P V such
that T pvq “ w. Since S is a basis for V , there are ci P R such that

v “ c1v1 ` . . . ` ckvk.

Then,

w “ T pvq “ T pc1v1 ` . . . ` ckvkq

“ c1T pv1q ` . . . ` ckT pvkq

“ c1T pv1q ` csT pvsq ` cs`1T pvs`1q ` . . . ` ckT pvkq

“ cs`1T pvs`1q ` . . . ` ckT pvkq

.

Therefore, w P SpanpT pUqq. As w was an arbitrary element of impT q, we have that SpanpT pUqq “

impT q.

We now show that T pUq is linearly independent. Suppose

0 “ cs`1T pvs`1q ` . . . ` ckT pvkq “ T pcs`1vs`1 ` . . . ` clvkq.

This implies that cs`1vs`1 ` . . . ` clvk is an element of kerpT q. Since kerpT q has S1 as a basis, we
see that there are di such that

d1v1 ` . . . ` dsvs “ cs`1vs`1 ` . . . ` clvk.

Thus,

d1v1 ` . . . ` dsvs ´ pcs`1vs`1 ` . . . ` clvkq “ 0.

We recall that S is a basis for V , so all di and ci are zero (linear independence). In particular, the ci
are all zero, implying T pUq is linearly independent and hence completing the proof.

Theorem 5.7. Let T : V Ñ W be a linear transformation of vector space. Suppose V is a finite
dimensional vector space. Then,

rankpT q “ dimpV q ´ nullitypT q

.

Proof. Since V is finite dimensional, so is kerpT q by Proposition 5.2. Therefore, we may select a basis
S1 “ tv1, . . . ,vsufor kerpT q. By Theorem 5.2, there is a basis S “ tv1, . . . ,vku of V that contains
S1. Then, S “ tT pvs`1, . . . ,vku is a basis for impT q (just like in the hypothesis of Proposition 5.3).
By Proposition 5.2, we have that dimpV q “ k ě s “ dimpW q. By Proposition 5.3, we have that
tT pvs`1q, . . . , T pvkqu is a basis for impT q. Therefore, rankpT q “ k ´ s “ dimpV q ´ nullitypT q, as
desired.

Typically it is easier to calculate the nullity of a transformation than the rank of a transformation. But,
the rank-nullity theorem allows us to calculate the rank of a transformation if we know the nullity. We see



5.4. ROW SPACE, COLUMN SPACE, AND CONNECTIONS WITH WITH RANK-NULLITY 93

an example of this now.

Example 5.34. In Example 5.3 we saw that the linear transformation T : R4 Ñ R2

T pxq “

„

1 2 3 0
1 0 2 0

ȷ

¨ x.

has kernel

kerpT q “

$

’

’

&

’

’

%

s

»

—

—

–

´2
´1
2
1
0

fi

ffi

ffi

fl

` t

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s, t P R

,

/

/

.

/

/

-

.

The dimension of kerpT q is 2 since begin

»

—

—

–

´2
´1
2
1
0

fi

ffi

ffi

fl

and

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

are linearly independent and

Span

$

’

’

&

’

’

%

»

—

—

–

´2
´1
2
1
0

fi

ffi

ffi

fl

,

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

,

/

/

.

/

/

-

“ kerpT q

.

By the Rank Nullity Theorem, we have that rankpT q “ dimpR4q ´ nullitypT q “ 4 ´ 2 “ 2. Therefore
the dimension of the image of T (i.e rankpT q) is 2.

5.4 Row Space, Column Space, and connections with with Rank-
Nullity

In the last example of the last section, we applied rank-nullity to the linear tranformation T pxq “

„

1 2 3 0
1 0 2 0

ȷ

.

We saw that nullitypT q “ 2 and rankpT q “ 2. We observe that the number of pivot columns of the matrix
„

1 2 3 0
1 0 2 0

ȷ

is precisely the rank of T and the number of columns corresponding to free variables is the

kernel of T . This is not a coincidence and is, in fact, a special version of the rank-nullity theorem.

Proposition 5.9. Let T : Rn Ñ Rm be a linear transformation given by multiplication on the left
by some m ˆ n matrix A (that is T pxq “ Ax). Then,

1. rankpT q “ number of pivot columns of A.

2. nullitypT q “ n ´ rankpT q.

Proof. This is a consequence of the rank-nullity theorem.

Soon we will see how to calculate rank and nullity of an linear transformation of abstract vector space
T : V Ñ W in a similar way. Until then, in particular on HW 7, we will calculate rank and nullity of linear
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transformations of abstract vector spaces by using just the definitions and the rank-nullity theorem. Let’s
put aside abstract vector spaces for a tiny bit and focus on linear transformations of the form T : Rn Ñ Rm.

Recall that any linear transformation of the form T : Rn Ñ Rm can be realized as multiplication on the
left by some m ˆ n matrix. Proposition 5.4 tells us that to understand the rank and nullity of T , we need
only understand the columns of A. For this reason, we make the following definition.

Column Space

Definition 5.21. Let T : Rn Ñ Rm be a linear transformation given by left multiplication of the
m ˆ n matrix A. Suppose A “

“

a1 a2 ¨ ¨ ¨ am
‰

. We set

ColpT q “ ColpAq “ Spanta1, . . . ,amu

and call it the Column Space of T (or A).

Example 5.35. Let T : R3 Ñ R4 be given by multiplication on the left by A “

»

–

2 0 1 1
2 3 0 1
1 1 0 1

fi

fl.

The column space of T is

Span

$

&

%

»

–

2
2
1

fi

fl ,

»

–

0
3
1

fi

fl ,

»

–

1
0
0

fi

fl ,

»

–

1
1
1

fi

fl

,

.

-

.

Let’s find the dimension of this space! To find it’s dimension, we must find a basis for it. We do this
by eliminating vectors that are not linearly independent from our spanning set. First, we calculate a
REF of A to be

»

–

2 0 1 1
0 3 ´2 ´1
0 0 ´4 ´5

fi

fl .

Any vector that corresponds to a pivot column we keep. Any vector that corresponds to a free
variable, we toss out. After doing this, we see that

ColpAq “ Span

$

&

%

»

–

2
2
1

fi

fl ,

»

–

0
3
1

fi

fl ,

»

–

1
0
0

fi

fl ,

»

–

1
1
1

fi

fl

,

.

-

“ Span

$

&

%

»

–

2
2
1

fi

fl ,

»

–

0
3
1

fi

fl ,

»

–

1
0
0

fi

fl

,

.

-

.

By our above work

$

&

%

»

–

2
2
1

fi

fl ,

»

–

0
3
1

fi

fl ,

»

–

1
0
0

fi

fl

,

.

-

islinearlyindependent.Thus,

$

&

%

»

–

2
2
1

fi

fl ,

»

–

0
3
1

fi

fl ,

»

–

1
0
0

fi

fl

,

.

-

is a basis

for ColpAq. Hence, dimpColpAqq “ 3.

Observation: By Proposition 5.4, rankpAq “ 3. Thus, rankpAq “ dimpColpAqq. This is not a
coincidence!

Theorem 5.8. Let A be an n ˆ m matrix. Then, rankpAq “ dimpColpAqq.

Proof. The proof of this follows along the same lines as the example above. Because of this, we omit
it.
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Proposition 5.10. Let A “
“

a1 ¨ ¨ ¨ am
‰

be an n ˆ m matrix. Let B be the n ˆ m matrix
obtained by interchaning, any two ai, adding a multiple of one ai to another aj , and scaling a ai by
some nonzero constant k P R (these are called column operations). Then,

ColpAq “ ColpBq.

Proof. We prove this for when B is obtained by swappinng two columns. The other verifications are
similar. We observe

ColpAq “ Spanta1, . . . ,ai, . . . ,aj , . . . ,amu “ Spanta1, . . . ,aj , . . . ,ai, . . . ,amu “ ColpBq.

Notice that Proposition 5.4 tells us that column operations do not affect the column space of a matrix.
We might wonder if row operations change the column space of a matrix. The answer is yes!

Example 5.36. Consider the matrix A “

„

1 0
0 0

ȷ

. The column space of A is Span

"„

1
0

ȷ*

. This

is precisely the line y “ 0. Now, adding row 1 to row 2 yields the matrix B “

„

1 0
1 0

ȷ

. The column

space of B is Span

"„

1
1

ȷ*

, which is the precisely the line y “ x. Thus, row operations definitely

change the column space of a matrix.

While this is sad, we can turn things around (literally)!

Row Space

Definition 5.22. Let T : Rn Ñ Rm be a linear transformation given by multiplication on the left

by an m ˆ n matrix A. Suppose A “

»

—

—

—

–

b1

b2

...
bn

fi

ffi

ffi

ffi

fl

. The set

RowpT q “ RowpAq “ Spantb1, . . . ,bnu

is called the row space of T (or A).

The following proposition allows us to manipulate the column space using row operations, just on a
different, albeit related, matrix!

Proposition 5.11. Let T : Rn Ñ Rm be a linear transformation given by multiplication on the left
by an m ˆ n matrix A. Then, ColpAq “ RowpAT q.



96 CHAPTER 5. VECTOR SPACES

Proposition 5.12. Let T : Rn Ñ Rm be a linear transformation given by multiplication on the left
by an mˆn matrix A. Let B be a matrix obtained by row reduction on A. Then, RowpAq “ RowpBq.

Theorem 5.9. Let T : Rn Ñ Rm be a linear transformation given by multiplication on the left by
an m ˆ n matrix A. Then ColpAq “ RowpREF pAT qq “ RowpREFF pAT qq.

Proof. This is immediate by Propositions 5.4 and 5.4.

The last proposition allows us to find a basis for the column space of a matrix quite easily! In fact, we
can circumvent the method used in Example 5.4.

Example 5.37. Let T : R3 Ñ R4 be given by multiplication on the left by A “

»

–

2 0 1 1
2 3 0 1
1 1 0 1

fi

fl.

The column space of T is

Span

$

&

%

»

–

2
2
1

fi

fl ,

»

–

0
3
1

fi

fl ,

»

–

1
0
0

fi

fl ,

»

–

1
1
1

fi

fl

,

.

-

.

We saw in Example 5.4 that

$

&

%

»

–

2
2
1

fi

fl ,

»

–

0
3
1

fi

fl ,

»

–

1
0
0

fi

fl

,

.

-

is a basis for ColpAq. Let’s find another basis for

this space using a method indicated by the theorem above. We row reduce AT “

»

—

—

–

2 0 0
0 3 0
1 ´2 ´4
1 ´1 ´5

fi

ffi

ffi

fl

.

We see that (an REF of A)

REF pAT q “

»

—

—

–

2 0 0
0 3 0
0 0 24
0 0 0

fi

ffi

ffi

fl

and

RREF pAT q “

»

—

—

–

1 0 0
0 1 0
0 0 1
0 0 0

fi

ffi

ffi

fl

.

Thus, as RowpREF pAT qq “ RowpREFF pAT qq “ ColpAq, the following are also bases for ColpAq

$

&

%

»

–

2
0
0

fi

fl ,

»

–

0
3
0

fi

fl ,

»

–

0
0
24

fi

fl

,

.

-

and

$

&

%

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl

,

.

-

.

Warning: Not all column spaces have such simple bases as in the example above. Sometimes free
variables put in some extra entries so that we have other vectors besides the standard ones.
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Summary: We have found two ways to determine a basis for the column space of a matrix (and also
the row space since the row space is the column space of the transpose). Which basis that we get is better?
The answer is: it depends on what you want. Sometimes we would like to figure out a basis for ColpAq by
knocking out column vectors until you get a basis (see Example 5.4). This allows us to remember where we
came from. On the flip side, sometimes all we want to know about the column space is its dimension. In
this case, following Example 5.4 is quicker since we don’t have to remember our original matrix. Personally
I prefer the method of Exercise 5.4, but you should learn both methods since on exams/homework I will ask
you to perform a specific method. Below we summarize the different algorithms to find bases for column
and row spaces of a matrix

Subset of the Columns of A that forms a basis for ColpAq

Algorithm 5.1. Let A “
“

a1 ¨ ¨ ¨ an
‰

1. Row reduce A.

2. Locate the pivot columns of A.

3. The pivot columns of A form a basis for ColpAq.

A basis for ColpAq using AT

Algorithm 5.2. Let A “
“

a1 ¨ ¨ ¨ an
‰

1. Write down AT

2. Row reduce AT .

3. The collection of rows with a leading 1 in AT forms a basis for ColpAq. Warning: this basis
forgets the original columns of A.

Subset of the Rows of A that forms a basis for RowpAq

Algorithm 5.3. Let A “
“

a1 ¨ ¨ ¨ an
‰

1. Write down AT

2. Row reduce AT .

3. Locate the pivot columns of AT .

4. The pivot columns of AT form a basis for RowpAq.

A basis for RowpAq using A

Algorithm 5.4. Let A “
“

a1 ¨ ¨ ¨ an
‰

1. Row reduce A.

2. The collection of rows with a leading 1 in A forms a basis for RowpAq. Warning: this basis
forgets the original rows of A.
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5.5 The Coordinate System with Respect to a Basis

In this section, we will describe how to realize a linear transformation of arbitary vector spaces as matrix
multiplication. It is not immediate that we can do this; after all, vectors do not need to look line column
vectors in Rn. First, let’s take a look at an example we have worked with many times. As we have
mentioned before the vectors te1, e2u of standard unit vectors form a basis for R2. Visually, e1 spans the
x-axis and e2 spans the y-axis. Since te1, e2u is a basis for R2, we can uniquely write every element v P R2

as v “ a1e1 ` a2e2, for some real numbers a1 and a2. We usually denote this by coordinate pa1, a2q. Why
not do this for any basis and for any vector space? All we used was the fact that t1, e2u is a basis. This leads
us to the concept of coordinate systems with respect to a basis. First, we prove an important proposition
that makes the notion of a coordinate system with respect to a basis, well defined.

Proposition 5.13. Let V be a vector space. Suppose B “ tw1, . . . ,wnu is a basis for V . Then
every element v P V can uniquely be written as

v “ a1w1 ` . . . ` anwn,

for some a1, . . . , an P R

Proof. Let v P V . Then, since B is a basis for V , we have that B spans V . Thus, there exists
a1, . . . , an P R such that

v “ a1w1 ` . . . ` anwn.

All that is left to show is that the representation of v above is unique. Suppose that there exists a
new set of number b1, . . . ,bn such that

v “ b121 ` . . .bnwn.

We will show that bi “ ai for all i; this will show that the representation of v above is unique. We
have

a1w1 ` . . . ` anwn “ v “ b121 ` . . .bnwn.

Therefore,

pa1 ´ b1qw1 ` . . . ` pan ´ bnqwn “ 0.

Since B is a basis for V , we have that B is linearly independent. As pa1´b1qw1`. . .`pan´bnqwn “ 0,
we have that ai ´ bi “ 0 for all i. This implies that ai “ bi for all i, establishing the claim.
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B-coordinate Vector

Definition 5.23. Let V be a vector space. Suppose that B “ tw1, . . . ,wnu is a basis for V . For a
vector v P V , by Proposition 5.5 we can uniquely write

v “ a1w1 ` . . . anwn,

for some a1, . . . , an P R. We denote the B-coordinate vector of v by rvsB, and define it to be the nˆ1
column vector in Rn

rvsB “

»

—

—

—

–

a1
a2
...
an

fi

ffi

ffi

ffi

fl

.

Remark 12. Proposition 5.5 is essential for Definition 5.5 to make sense. Take a moment to think why
this is the case!

Remark 13. Let B “ te1, e2u be the standard basis for R2. The B-coordinate vector of a vector in R2 is
precisely its usually ordered pair representation as discussed in the introduction of this section.

Example 5.38. Consider the basis B “ te1, e2, e3u of Rn consisting of the standard unit vectors.

Consider another basis of Rn, C “

$

&

%

»

–

1
0
0

fi

fl ,

»

–

1
1
0

fi

fl ,

»

–

1
1
1

fi

fl

,

.

-

. Let v “

»

–

1
1
1

fi

fl be an element of R3. We will

find rvsB and rvsB1 . Do do, we find how to write v as a linear combination of the elements of B and
then again in B1. Luckily this is easy with the basis we have (we will look at a more difficult example
shortly). We have

»

–

1
1
1

fi

fl “ 1

»

–

1
0
0

fi

fl ` 1

»

–

0
1
0

fi

fl ` 1

»

–

0
0
1

fi

fl .

Thus, rvsB “

»

–

1
1
1

fi

fl. On the other hand

»

–

1
1
1

fi

fl “ 1

»

–

1
0
0

fi

fl ` 0

»

–

1
1
0

fi

fl ` 1

»

–

1
1
1

fi

fl .

Thus, rvsB1 “

»

–

0
0
1

fi

fl. Here we see that the choice of basis is important when describing B-coordinates! s
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Example 5.39. Lets do a slightly more difficult example (difficult in the sense that finding basis
representation for vectors won’t be as easy). Consider the basis B “ te1, e2, e3u of Rn consisting of

the standard unit vectors. Consider another basis of Rn, C “

$

&

%

»

–

1
2
0

fi

fl ,

»

–

1
1
1

fi

fl ,

»

–

1
0
1

fi

fl

,

.

-

. Let v “

»

–

1
0
0

fi

fl be

an element of R3. We will find rvsB and rvsB1 . Do do, we find how to write v as a linear combination
of the elements of B and then again in B1. Since,

»

–

´

0
0

fi

fl “ 1

»

–

1
0
0

fi

fl ` 1

»

–

0
1
0

fi

fl ` 0

»

–

0
0
1

fi

fl .

Thus, rvsB “

»

–

1
0
0

fi

fl. Now, we want to find c1, c2, and c3 so that

»

–

1
0
0

fi

fl “ c1

»

–

1
2
0

fi

fl ` c2

»

–

1
1
1

fi

fl ` c3

»

–

1
0
1

fi

fl .

This is equivalent to finding the unique solution to the matrix equation

»

–

1 1 1
2 1 0
0 1 1

fi

fl

»

–

c1
c2
c3

fi

fl “

»

–

1
0
0

fi

fl .

Doing our usual Gaussian elimination we have a row equivalence

»

–

1 1 1 | 1
2 1 0 | 0
0 1 1 | 0

fi

fl ÞÑ

»

–

1 0 0 | 1
0 1 0 | ´2
0 0 1 | 2

fi

fl .

Therefore,

»

–

1
0
0

fi

fl “ 1

»

–

1
2
0

fi

fl ` p´2q

»

–

1
1
1

fi

fl ` 2

»

–

1
0
1

fi

fl .

Thus,

rvsB1 “

»

–

1
´2
2

fi

fl .

Example 5.40. The vector space Rrxsď3 has a basis B “ t1, x, x2, x3u. The polynomial 1´2x2`7x3

has

r1 ´ 2x2 ` 7x3sB “

»

—

—

–

1
0

´2
7

fi

ffi

ffi

fl

.
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Example 5.41. We have seen that the vectors f “ sinpxq and g “ cospxq in CpRq are linear
independent. Thus, B “ tf, gu is a basis for W “ Spanf, g (why is B not a basis for CpRq?). We have

r2 sinpxq ´ π ¨ cospxqsB “

„

2
π

ȷ

You might be thinking: why should we care about B-coordinate vectors? As you may have realized,
dealing with abstract vector spaces can be difficult- especially if we do not know what the vector space looks
like. However, if we fix a basis B for our vector space, and consider B-coordinates of vectors, we suddenly
have a concrete way to manipulate vectors by realizing them as the n ˆ 1 vectors in Rn that we know and
(hopefully) love. Doing this allows us to apply all of the things we have learned since the beginning of the
semester to abstract vector spaces. The only catch is that this description of vectors v P V depends heavily
on the basis we choose. This complicates life a little bit, but the complication is well worth it; we will
soon see how to deal with this complication in a very efficient and clean way. But, for now, lets explore
B-coordinate vectors a little more. First, we recall the notion of an isomorphism.

Definition 5.24. Let T : V Ñ W be a linear transformation of vector spaces. If T is injective and
surjective (i.e T is bijective), we say that T is an isomorphism.

Definition 5.25. Let V and W be vector spaces. If there is an isomorphism T : V Ñ W , we say
that V is isomorphic to W

Exercise 5.7. If V and W are isomorphic, is every linear transformation T : V Ñ W an isomorphism.

Exercise 5.8. Let T : V Ñ W be a linear transformation of vector spaces. Show that T is injective if and
only if whenever T pvq “ 0, then v “ 0.

Definition 5.26. Let V be a vector space with basis B “ te1, . . . , enu. Define the coordinate map
CB : V Ñ Rn by

CBpvq “ rvsB.

The following theorem is absolutely amazing.
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Theorem 5.10. Let V be an n-dimensional vector space with basis B “ te1, . . . , enu. Then,

CB : V Ñ Rn

is an isomorphism.

Proof. First we show that CB : V Ñ Rn is a linear transformation. To this end, suppose v,w P V
and r P R. Let v “ a1e1 ` . . . ` anen and v1 “ b1e1 ` . . . ` bnen. Then,

v ` w “ pa1 ` b1qe1 ` . . . ` pan ` bnqen.

and

rv “ ra1e1 ` . . . ` ranen.

By definition of CB, we have that rvsB “

»

—

–

a1
...
an

fi

ffi

fl

, rwsB “

»

—

–

b1
...
bn

fi

ffi

fl

,

rv ` wsB “

»

—

–

a1 ` b1
...

an ` bn

fi

ffi

fl

and

rrvsB “

»

—

–

ra1
...

ran

fi

ffi

fl

.

Therefore,

CBpv ` v1q “ rv ` wsB “ rvsB ` rwsB “ CBpvq ` CBpwq

and

CBprv “ rrvsB “ rrvsB “ rCBpvq.

Therefore, CB is a linear transformation. We now show that CB is a bijection. To see that CB
is injective suppose CBpvq “ Bpwq. Then, rvsB “ rwsB. Let v “ a1e1 ` . . . ` anen and v1 “

b1e1 ` . . . ` bnen. Then,

»

—

–

a1
...
an

fi

ffi

fl

“

»

—

–

b1
...
bn

fi

ffi

fl

.

This implies a1 “ b1, a2 “ b2,..., an “ bn. Hence,

v “ a1e1 ` . . . ` anen “ b1e1 ` . . . ` bnen “ w.

Thus, CB is injective. Now, we show that CB is surjective. Suppose that

»

—

–

c1
...
cn

fi

ffi

fl

P Rn. Set v “

c1e1 ` . . . ` cnen, then

CBpvq “

»

—

–

c1
...
cn

fi

ffi

fl

.

Hence, CB is surjective. We conclude that CB is an isomorphism.
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Remark 14. Theorem 5.5 says that an n-dimensional vector space is basically the same thing as Rn. Of
course, we should be careful with saying ”the same”. The vectors of V are technically different; however,
we can associate the vectors of V to those of Rn that respects vector space structure. So, if all we want
to understand is the vector space structure of a space, it suffices to study the vector space structure of Rn.
Sometimes, we do need to remember how V and Rn are isomorphic in order to translate properties of Rn to
V .

Remark 15. Warning: The linear transformations CB as in Theorem 5.5 is dependent on the basis B
that we have chosen!

The wonderful thing about the CB is that they can be used to tell us how to realize a linear transformation
as matrix multiplication. Let V be a vector space of dimension n have a basis B and W be a vector space
of dimension m with basis B1. Consider the following diagram

Rn Rm

V W

CB CB1

T

S

We would like to construct a linear transformation S : Rn Ñ Rm such that

CB1 ˝ T “ S ˝ CB.

Often, when such a conditions holds, mathematicians say that the ”the diagram commutes“. In essence, this
means that ”S is essentially the same as T”. Why do we want to this? We know that S can be realized
as matrix multiplication. Thus, once we realize what S is, we can figure out how to realize T as matrix
multiplication. Before we talk about how to do this in full generality, lets do it for a particular example.
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Example 5.42. Let V “ Rrxsď2, andW “ Rrxsď1. Consider the bases B “ t1, x, x2u and C “ t1, xu

for V and W , respectively. Consider the function d
dx : V Ñ W given by

d

dx
pa0 ` a1x ` a2x

2q “ a1 ` 2a2x.

This is a linear transformation (where have we seen this before?). Let’s see how we can find a linear
transformation S : R3 Ñ R2 that completes the following diagram.

R3 R2

V W

CB CC

d
dx

S

First, we note that as CB and CC are isomorphisms, we have CBpBq “ tr1sB, rxsB, rx2sBu “
$

&

%

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl

,

.

-

is a basis for R3, and CCpBq “ tr1sB, rxsBu “

"„

1
0

ȷ

,

„

0
1

ȷ*

is a basis for R3.

Now, to describe S : R3 Ñ R2, we need only see describe what S does to the standard unit vectors

of R3. Recall CBp1q “

»

–

1
0
0

fi

fl, CBpxq “

»

–

0
1
0

fi

fl, and CBpx2q “

»

–

0
0
1

fi

fl. In order for

CC ˝
d

dx
“ S ˝ CB,

we must have CC ˝ d
dx p1q “ S ˝ CBp1q, CC ˝ d

dx pxq “ S ˝ CBpxq, and CC ˝ d
dx px2q “ S ˝ CBpx2q.

Simplifying, we must have that

„

0
0

ȷ

“ S

¨

˝

»

–

1
0
0

fi

fl

˛

‚,

„

1
0

ȷ

“ S

¨

˝

»

–

0
1
0

fi

fl

˛

‚, and

„

0
2

ȷ

“ S

¨

˝

»

–

0
0
1

fi

fl

˛

‚. As we

have seen before, S is matrix multiplication by

“

Spe1q Spe2q Spe3q
‰

“

„

0 1 0
0 0 2

ȷ

.

Hence, Spvq “

„

0 1 0
0 0 2

ȷ

¨ v.

Remark 16. The above example tells us that the linear tranfomration d
dx : V Ñ W can be thought as the

linear transfomration S : R3 Ñ R2 given by multiplication by the matrix

„

0 1 0
0 0 2

ȷ

. Thus, in order to

understand d
dx , it suffices to understand

„

0 1 0
0 0 2

ȷ

. We know how to handle the latter!

There was nothing terribly special about the linear transformation above, and we can describe a linear
transformation, in some sense, by matrix multiplication like we just did.
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Algorithm 5.5. Let T : V Ñ W be a linear transformation of vector spaces. Fix bases B “

tv1, . . . ,vnu for V and C “ tw1, . . . ,wku for W .
Draw the diagram

Rn Rk

V W

CB CC

T

SB,C

We will determine how to find S to complete this diagram in the sense that CB1 ˝ T “ SB,C ˝ CB (i.e
that the diagram commutes).

1. Find CCpT pviqq for all i.

2. Set

SB,C “
“

CCpT pv1qq ¨ ¨ ¨ CCpT pvnqq
‰

We call SB,C the matrix representing T with respect to B and C.

Warning: This SB,C that we have found depends heavily on our choice of bases for V and W . That
is to say, that if we chose different bases, we would get a different matrix.

With this algorithm in hand, we can now understand linear transformations of abstract vector space by
using methods we have developed for linear transformations of the form S : Rn Ñ Rm! We will have some
practice with this in the homework. For now, we will use this principle to calculate the kernel of the map
defined in Example 5.5.
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Example 5.43. ?? Let V “ Rrxsď2, and W “ Rrxsď1. Consider the bases B “ t1, x, x2u and
C “ t1, xu for V and W , respectively. Consider the function d

dx : V Ñ W given by

d

dx
pa0 ` a1x ` a2x

2q “ a1 ` 2a2x.

We have seen that the matrix

„

0 1 0
0 0 2

ȷ

,

makes the following diagram commute

R3 R2

V W

CB CC

d
dx

S

We can find rankpT q and nullitypT q by finding rankpSq and nullitypSq. Finding the latter things is
easier since S is given by matrix multiplication, which we know how to handle very well! First, lets

find the nullity of S; to do so, we find that that matrix

„

0 1 0
0 0 2

ȷ

row reduces to

„

0 1 0
0 0 1

ȷ

Therefore, 1 “ nullitypSq “ nullitypT q. Hence, by rank-nullity

rankpT q “ dimpV q ´ nullitypT q “ 3 ´ 1 “ 2.

5.6 Base Change Matrices

Let us first consider the space Rn. The standard basis B is for Rn is convenient for most problems; however,
there are other times when we are working on a problem that is much easier solve with another basis C.
Since we usually view vectors, say v, in Rn as its B-coordinate, namely rvsB, if we want to make things more
convenient and work with C, then we must find a convenient way to relate rvsB and rvsC . Lets first try to
tackle this through a specific example as this will help us work out the general case.
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Example 5.44. Let V “ R3 and consider the vector v “

»

–

1
2
3

fi

fl. Let B be the standard basis of V

and consider the basis C “

$

&

%

»

–

1
2
3

fi

fl ,

»

–

1
0
0

fi

fl ,

»

–

0
0
3

fi

fl

,

.

-

. We note that rvsB “

»

–

1
2
3

fi

fl. Let’s find rvsC . To do

this we need to write v in terms of the basis C. This is tantamount to solving the vector equation

»

–

1
2
3

fi

fl “ c1

»

–

1
2
3

fi

fl ` c2

»

–

1
0
0

fi

fl ` c3

»

–

0
0
3

fi

fl .

While we can solve this by inspection, for sake of illustration, we note that it suffices to do Gaussian
Elimination on

»

–

1 1 0 1
2 0 0 2
3 0 3 3

fi

fl .

Either way, we see that c1 “ 1, c2 “ 0, and c3 “ 0. Hence, rvsC “

»

–

1
0
0

fi

fl.

For fun, let’s see if we can come up with a systematic way to turn rvsB into rvsC , for any v P R3.

Suppose that rvsB “

»

–

v1
v2
v3

fi

fl. Then we would like to solve the vector equation

»

–

v1
v2
v3

fi

fl “ c1

»

–

1
2
3

fi

fl ` c2

»

–

1
0
0

fi

fl ` c3

»

–

0
0
3

fi

fl .

Solving this vector equation is tantamount to applying Gaussian elimination to

»

–

1 1 0 v1
2 0 0 v2
3 0 3 v3

fi

fl .

The RREF of this matrix is

»

–

1 0 0 v2
2

0 1 0 ´v2´2v1
2

0 0 1 v3
3 ´ v2

2

fi

fl .

So, rvsC “

»

–

v2

2

´v2´2v1
2

v3
3 ´ v2

2

fi

fl. While we do have a general answer, it can sometimes take a lot of work to

get here. Below we discuss an easier, yet equivalent way of doing this.
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Rn-base change matrix from new to new

Algorithm 5.6. Let B “ tv1, . . . ,vnu and C “ tw1, . . . ,wnu be bases for Rn (not necessarily a
standard basis here).

1. Write each vi as a linear combination of the vectors in C.

2. Use the above step to find rvisC .

3. Construct the matrix

PBÑC “
“

rv1sC ¨ ¨ ¨ rvnsC
‰

.

Then, for every v P Rn, we have

PBÑC ¨ rvsB “ rvsC .

We call PBÑC the base change matrix from B to C. .

Warning: PBÑC and PCÑB are usually not the same.

Example 5.45. Let b1 “

„

´9
1

ȷ

, b2 “

„

´5
´1

ȷ

, c1 “

„

1
´4

ȷ

, and c2 “

„

3
´5

ȷ

. Consider the bases

B “ tb1,b2u and C “ tc1, c2u. We will find PBÑC and PCÑB. We will use our algorithm. First, we
find that

b1 “ 6c1 ´ 5c2 and b2 “ 4c1 ´ 3c2.

Thus,

PBÑC “

„

6 4
´5 ´3

ȷ

.

Similarly, one can compute

PBÑC “

„

´3{2 ´2
5{3 3

ȷ

.

L

Example 5.46. t b1 “

„

1
´3

ȷ

, b2 “

„

´2
4

ȷ

, c1 “

„

´7
9

ȷ

, and c2 “

„

´5
7

ȷ

. Consider the bases

B “ tb1,b2u and C “ tc1, c2u. We will find PBÑC and PCÑB. Using our algorithm, we find that

PBÑC “

„

2 ´3{2
´3 5{2

ȷ

and

PCÑB “

„

5 3
6 4

ȷ
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inverse

Proposition 5.14. Let B “ tv1, . . . ,vnu and C “ tw1, . . . ,wnu be bases for Rn. Then

PCÑB “ P´1
BÑC .

L

Example 5.47. t b1 “

„

1
´3

ȷ

, b2 “

„

´2
4

ȷ

, c1 “

„

´7
9

ȷ

, and c2 “

„

´5
7

ȷ

. Consider the bases

B “ tb1,b2u and C ` tc1,
bfc2u. We saw that

PBÑC “

„

2 ´3{2
´3 5{2

ȷ

and

PCÑB “

„

5 3
6 4

ȷ

After a quick verification, we see that

PCÑB “ P´1
BÑC .
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Theorem 5.11. Let B “ tv1, . . . ,vnu and C “ tw1, . . . ,wnu be bases for Rn. Then, we have row
equivalences:

“

v1 ¨ ¨ ¨ vn | w1 ¨ ¨ ¨ wn

‰

„„„
“

In | PCÑB
‰

and

“

w1 ¨ ¨ ¨ wn | v1 ¨ ¨ ¨ vn

‰

„„„
“

In | PBÑC
‰

.

Caution: beware of the seemingly odd order of things.

Proof. We prove just one of these, namley the second one; the other will follow similarly. To find
PBÑC we need to solve the equations

v1 “c1,1w1 ` ¨ ¨ ¨ ` c1,nwn

...

vn “cn,1w1 ` ¨ ¨ ¨ ` cn,nwn

.

To solve these equations, we row reduce the following augmented matrices

“

w1 ¨ ¨ ¨ wn | v1

‰

...
“

w1 ¨ ¨ ¨ wn | vn

‰

.

Rather than row reducing these one at a time, we can reduce

“

w1 ¨ ¨ ¨ wn | v1 ¨ ¨ ¨ vn

‰

.

Since C is a basis for W , it’s vectors are linearly independent. Hence, by the Inverses in Disguises
Theorem, there is a row reduction:

“

w1 ¨ ¨ ¨ wn | v1 ¨ ¨ ¨ vn

‰

„„„
“

In | B
‰

.

Here, B is precisely PBÑC by design.

Remark 17. You can use any method you want to calculate these base-change matrices. I personally prefer
attacking the equations one at a time, but I cede that using the method as illustrated in the above theorem is
more computationally effective. Find out which one you like better!
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L

Example 5.48. t’s convince ourselves that this theorem really works! Let b1 “

„

1
´3

ȷ

, b2 “

„

´2
4

ȷ

,

c1 “

„

´7
9

ȷ

, and c2 “

„

´5
7

ȷ

. Consider the bases B “ tb1,b2u and C “ tc1, c2u. We will find PBÑC

and PCÑB. Using Theorem ??, we row reduce

„

´7 ´5 | 1 ´2
9 7 | ´3 4

ȷ „

1 0 | 2 ´3{2
0 1 | ´3 5{2

ȷ

So,

PBÑC “

„

2 ´3{2
´3 5{2

ȷ

as verified previously.

There was nothing terribly special about doing base change matrices with V “ Rn. We can do exactly
the same procedures to procure base change matrices for abstract vector spaces and their bases!

V base change matrix from new to new

Algorithm 5.7. Let B “ tv1, . . . ,vnu and C “ tw1, . . . ,wnu be bases for a vector space V .

1. Write each vi as a linear combination of the vectors in C.

2. Use the above step to find rvisC .

3. Construct the matrix

PBÑC “
“

rv1sC ¨ ¨ ¨ rvnsC
‰

.

Then, for every v P Rn, we have

PBÑC ¨ rvsB “ rvsC .

We call PBÑC the base change matrix from B to C. .
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A more abstract example

Example 5.49. Let V “ Rrxsď2 and consider the following bases for V : B “ t1, x, x2u and
C “ t1 ´ x, x2 ` 1, 3u. We will find PBÑC and PCÑB. We first calculate PBÑC . To this end:

1 “ 0p1 ´ xq ` 0px2 ` 1q `
1

3
¨ 3

x “ ´1p1 ´ xq ` 0px2 ` 1q `
1

3
¨ 3

and

x2 “ 0p1 ´ xq ` 1px2 ` 1q ´
1

3
¨ 3.

Therefore,

PBÑC “

»

–

0 ´1 0
0 0 1
1
3

1
3 ´ 1

3

fi

fl .

Calculating the inverse of PBÑC yields

PCÑB “ pPBÑCq´1 “

»

–

1 1 3
´1 0 0
0 1 0

fi

fl .



Chapter 6

Eigenvalues and Eigenvectors

6.1 Eigenvalues and Eigenvectors of Matrices

Recall Homework 5 problem 4 (included here for your convinence):

HW 5 4 Let A1 “

»

–

0 1 0
1 0 0
0 0 1

fi

fl, A2 “

»

–

1 0 0
0 0 1
0 1 0

fi

fl ,, and

»

–

0 0 1
0 1 0
1 0 0

fi

fl.

1. Find all vectors in R3 that are fixed by A1. In other words, find all x P R3 such that A1x “ x

2. Find all vectors in R3 that are fixed by A2. In other words, find all x P R3 such that A2x “ x

3. Find all vectors in R3 that are fixed by A3. In other words, find all x P R3 such that A3x “ x

4. Use parts (a) through (c) to find all vectors in R3 that are fixed by A1, A2, A3.

Here we found particular vectors that satisfied A1x “ x, A2x “ x and A3x “ x. These vectors were
special in that the matrices A1, A2 and A3 kept them the same. Unfortunately in general, matrices do
not keep ANY nonzero vector the same.

Example 6.1. Let A “

„

3 ´2
0 3

ȷ

. We will show that no vector b “ pb1, b2q is fixed by the

matrix. That is to say, we will show that Ab “ b has no nontrivial solution. This is equivalent
to showing that pA ´ Iqb “ 0. Note that

A ´ I “

„

2 ´2
0 2

ȷ

.

Now, since this matrix is invertible pA ´ Iqb “ 0 has no nonzero solution. Therefore A does
not fix any nonzero vector.

113
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While the above example is perhaps sad, we can look at the next best thing! Instead of hoping that a
square matrix fixes a vector, we can figure out when a matrix scales a vector by a constant. That is to
say: given a square matrix A, for which λ P R does there exist a x such that Ax “ λx? It turns out
matrices always have these, so we give them a name.

Eigenvalues and Eigenvectors of a Matrix

Definition 6.1. Let A be an n ˆ n matrix. We say that λ P R is an eigenvalue of A if there
is a nonzero vector x such that Ax “ λx. In this case we say that x is an eigenvector of A
associated to λ.

Remark 18. The word ”eigen“ comes from the German language. It means ”self“.

Example 6.2. Let A “

„

3 ´2
0 3

ȷ

, like in the previous example. Let’s see if we can find some

eigenvectors for A and their corresponding eigenvalues. Consider the vector

„

2
0

ȷ

. We see that

„

3 ´2
0 3

ȷ „

2
0

ȷ

“

„

6
0

ȷ

“ 3

„

2
0

ȷ

.

Therefore, p2, 0q is an eigenvector of A with eigenvalue 3.

Example 6.3. Let A “

„

3 ´2
0 3

ȷ

, like in the previous example. We will show that

„

1
1

ȷ

is not

an eigenvector. We see that

„

3 ´2
0 3

ȷ „

1
1

ȷ

“

„

1
3

ȷ

.

Since

„

1
3

ȷ

is not a multiple of

„

1
1

ȷ

, the latter is not an eigenvector.

Example 6.4. Let A “

„

3 ´2
0 3

ȷ

, like in the previous example. We will show that 2 is not an

eigenvalue for A. To determine if 2 is an eigenvalue for A, we must see if

Ax “ 2x

has a nontrivial solution. This is tantamount to seeing if

pA ´ 2Iqx “ 0

has a nontrivial solution. Since A ´ 2I “

„

1 ´2
0 1

ȷ

, we have that A ´ 2I is invertible, so

pA ´ 2Iqx “ 0

has no nontrivial solution. Therefore, 2 is not an eigenvalue for A.
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Guessing and checking eigenvalues/eigenvectors is a very inefficient way of going about things. The
following Theorem will give us a way to search for eigenvalues (and hence eigenvectors) is a better way.

Theorem 6.1. Let A be an n ˆ n matrix. The following are equivalent

(a) λ P R is an eigenvalue for A

(b) The equation pA ´ λIqx “ 0 has a nontrivial solution

(c) detpA ´ λIq “ 0.

Proof. Rather than give a technical proof, we will point out that detpA ´ λIq “ 0 implies that
pA ´ λIqx “ 0 has a nontrivial solution by the Inverses in Disguise Theorem.

Example 6.5. Let A “

„

3 ´2
0 3

ȷ

, like in the previous example. We will find all eigenvalues

of A. To do so, we need to figure out which λ P R satsify

detpA ´ λIq “ 0

Now, A´λI “

„

3 ´ λ ´2
0 3 ´ λ

ȷ

. Thus, detpA´λIq “ 0 if and only if det

ˆ„

3 ´ λ ´2
0 3 ´ λ

ȷ˙

“ 0.

Now

det

ˆ„

3 ´ λ ´2
0 3 ´ λ

ȷ˙

“ p3 ´ λqp3 ´ λq “ 0

if and only if λ “ 3. Thus, 3 is the only eigenvalue of A.

As we can see, the condition that detpA ´ λIq “ 0 is particularly useful, so lets give it a name!

The Characteristic Equation

Definition 6.2. Let A be an n ˆ n matrix. The characteristic equation of A is

detpA ´ λIq “ 0

Remark 19. The characteristic equation of a (square) matrix is always a polynomial with variable λ.
In fact the degree of the characteristic equation of a matrix is equal to the size of the matrix!
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Example 6.6. Let A “

»

–

1 1 1
0 2 2
0 3 3

fi

fl. We will use the characteristic equation of A to find the

eigenvalues of A. To this end, we have

A ´ λI “

»

–

1 ´ λ 1 1
0 2 ´ λ 2
0 3 3 ´ λ

fi

fl

By cofactor expansion along the first column, we have that

detpA ´ λIq “ p1 ´ λqpp2 ´ λqp3 ´ λq ´ 6q.

Now, detpA ´ λq “ 0 if and only if λ “ 1 or p2 ´ λqp3 ´ λq ´ 6 “ 0. The latter happens if and
only if λ “ 0, 5. Thus, the eigenvalues of A are 1, 0, and 5.

Proposition 6.1. Let A be an upper or lower triangular matrix. Then, the eigenvalues of A
are precisely the entries along the diagonal of A.

Proof. If A is an upper or lower triangluar matrix, then so is A´λI. Therefore, detpA´λIq “

pa1,1 ´ λq ¨ ¨ ¨ pan,n ´ λq “ 0 if and only if λ “ a1,1, . . . , an,n, as desired.

Example 6.7. Let A “

»

–

1 2 3
0 4 6
0 0 7

fi

fl. Then the eigenvalues of A are 1, 4 and 7.

Theorem 6.2. A matrix A is invertible if and only if 0 is not an eigenvector for A.

Proof. A is invertible if and only if pA´ 0Iq “ A is invertible. Hence A is invertible if and only
if detpA´ 0Iq “ detpAq ‰ 0. Thus, A is invertible if and only if 0 is not an eigenvalue of A.

Eigenspaces

Definition 6.3. Let A be an square matrix of size n. Suppose that λ P R is a eigenvalue of
A. We call the collection of all eigenvectors of A associated to λ the eigenspace of A associated
to λ. We will denote this by EλpAq
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Proposition 6.2. Let A be an square matrix of size n. Suppose that λ P R is a eigenvalue of
A. Then, the eigenspace of A associated to λ is a subspace of Rn.

Proof. This is a quick application of the subspace criteria. Certainly, 0 P EλpAq since A0 “ λ0.
Now, suppose that x,y P EλpAq, then by definition, we have that Ax “ λx and Ay “ λy.
Then,

Apx ` yq “ Ax ` Ay “ λx ` λy “ λpx ` yq.

Hence, x ` y P EλpAq. Lastly, assume that x P EλpAq and k P R. Then,

Apkxq “ kAx “ kλx “ pkxq,

so kx P EλpAq.

Example 6.8. Let A “

»

–

1 1 1
0 2 2
0 3 3

fi

fl as in the example above. We saw that 0 is an eigenvalue

of A. Let’s describe E0pAq concretely. To find E0pAq, we need to find all eigenvectors associated
to 0 of A. Such vectors must satisfy

0 “ pA ´ 0Iqx “ Ax.

Hey! The set of such vectors is precisely the kernel of A. Using row operations on
“

A | 0
‰

,
we find the kernel of A to be

tp0, s, sq “ sp0, 1, 1q | s P Ru “ E0pAq.

Next, lets find E1pAq. To find E1pAq, we need to figure out which x satisfy

pA ´ Iqx “ 0.

Hey! This is the kernel of pA´ Iq. Using row operations on
“

A ´ I | 0
‰

tells us kerpA´ Iq is

tsp1, 0, 0q | s P Ru “ E1pAq.

The above example leads us the the following propostion.

Proposition 6.3. Let A be a square matrix with eigenvalue λ. Then,

EλpAq “ kerpA ´ λIq.

The following theorem is super cool! We won’t prove it since I don’t think the proof is super enlight-
ening. However, we should think of the next theorem as telling us that eigenvectors corresponding to
different eigenvalues are linearly independent (and hence very different from on another).
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Theorem 6.3. Let A be a square matrix of size p with distint eigenvalues λ1, . . . , λn. Let
x1, . . . ,xn be eigenvectors corresponding to λ1, . . . , λn, respectively. Then the set

tx1, . . . ,xnu

is a linearly independent subset of Rp

6.2 Eigenvalues and Eigenvectors of Linear Transformations

There is nothing stopping us in defining eigenvalues and eigenvectors of an abstract linear transformation!
The only difference is that we don’t have a matrix to work with, at least at first glance. In this section, we
will talk about how to find eigenvalues and eigenvectors of linear transformations of abstract vector spaces.
Note: the definition that follows is more or less the same as the once in the previous section!

Eigenvalues and Eigenvectors of a Linear Transformation

Definition 6.4. Let V be a vector space and T : V Ñ V be a linear transformation. An eigenvalue
λ P R for T is a real number such that there exists a nonzero v P V satisfying

T pvq “ λv.

We call the vector v an eigenvector associated to λ.

Finding eigenvalues and eigenvectors of an abstract linear transformation T : V Ñ V can be intimidating
since what we are working with is likely not Rn. However, as we saw in chapter 5, we can always take an
abstract linear transformation and lift it to one that looks like a matrix! We will do this to find eigenvalues
and eigenvectors for T : V Ñ V , where V is any vector space. First recall Algorithm 6.2, copied here for
your convenience.
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Algorithm 6.1. Let T : V Ñ W be a linear transformation of vector spaces. Fix bases B “

tv1, . . . ,vnu for V and C “ tw1, . . . ,wku for W .
Draw the diagram

Rn Rk

V W

CB CC

T

SB,C

We will determine how to find S to complete this diagram in the sense that CB1 ˝ T “ SB,C ˝ CB (i.e
that the diagram commutes).

1. Find CCpT pviqq for all i.

2. Set

SB,C “
“

CCpT pv1qq ¨ ¨ ¨ CCpT pvnqq
‰

We call SB,C the matrix representing T with respect to B and C.

Warning: This SB,C that we have found depends heavily on our choice of bases for V and W . That
is to say, that if we chose different bases, we would get a different matrix.

We will use Algorithm 6.2 to find eigenvalues and eigenvectors of abstract linear transformations, as
described in next theorem.

Theorem 6.4. Let V be a vector space of dimension n and T : V Ñ V be a linear transformation.
Let B be a basis for V and SB,B : Rn Ñ Rn the matrix representing T with respect to B and B. Then,
λ P R is an eigenvalue for T if and only if λ is an eigenvalue for SB,B. In other words the eigenvalues
for T and SB,B are exactly the same.

Proof. We omit a proof of this fact.

Remark 20. Theorem 6.2 says that the eigenvalues of a matrix are independent of the basis we choose for
V . So, no matter which basis for V we choose, we will get the same eigenvalues.

Warning: Theorem 6.2 does not say that the eigenvectors of SB,B are exactly the same as the eigenvectors
of T . This is because SB,B and T has different domains. Though, one can use the coordinate maps to find
out what the eigenvalues of T with respect to a particular eigenvalue are; we won’t do this. If you are
interested, I am more than happy to talk about it with you!

Let’s practice Theorem 6.2!
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Example 6.9. Let V “ Rrxsď2. Consider the basis B “ t1, x, x2u for V . Consider the function
d
dx : V Ñ W given by

d

dx
pa0 ` a1x ` a2x

2q “ a1 ` 2a2x.

The matrix representation of d
dx relative to B is:

SB,B “

»

–

0 0 0
0 1 0
0 0 2

fi

fl .

The eigenvalues of the matrix SB,B are 0, 1 and 2.

You might be wondering, what happens if we choose a different basis for V in the above example? Nothing
changes except for the matrix we get! The eigenvalues will still be the same- let’s check this.

Example 6.10. Let V “ Rrxsď2. Consider the basis B “ t1, x ´ 1, x2 ´ 1u for V . Consider the
function d

dx : V Ñ W given by

d

dx
pa0 ` a1x ` a2x

2q “ a1 ` 2a2x.

We will find the matrix representation of d
dx relative to B. First, T p1q “ 0, T pxq “ 1 and T px2q “

2x “ 2 ¨ 1 ` 2px ´ 1q. Hence,

SB,B “

»

–

0 0 0
0 1 2
0 0 2

fi

fl .

The eigenvalues of the matrix SB,B are 0, 1 and 2 (which can be seen since it is an upper triangular
matrix).

The following example is for fun and a connection to differential equations! It shows that weird things
happen with infinite dimensional vector space (where our theorem does not apply)!

Example 6.11. Let V “ DiffpRq and let Dx : V Ñ V be the derivative transformation (that is
Dxpfq “

df
dx ). Let’s find its eigenvalues and some eigenvectors! Let λ P R be ANY real number, we

will show that λ is an eigenvalue of Dx and λex is an eigenvector associated to λ. Indeed,

Dxpλexq “ λex.

So, Dx has an infinite number of eigenvalues!

6.3 Diagonalization and Similarity of Matrices

Motivation for Similarity: In the previous section, we saw that to understand linear transformations of
abstract vector spaces and their eigenvalues, one must complete a diagram like so:
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Rn Rn

V V

CB CB

T

SB,B

where T : V Ñ V is a linear transformation of vector spaces and B “ tv1, . . . ,vnu is a fixed basis for V . In
other words CB ˝ SB,B “ CB ˝ T . Since CB is an isomorphism (we showed this before), it follows that it has
an inverse C´1

B (a function f has an inverse, which we denote f´1, if f ˝ f´1 “ 1 and f´1 ˝ f “ 1.)
Thus,

T “ CB ˝ SB,B ˝ C´1
B .

From this equation, it appears that ”T is similar to SB,B”. This motivates us to make the following
definition

Definition 6.5. We say that two n ˆ n matrices A and B are similar if there is an invertible n ˆ n
matrix P such that

B “ PAP´1

For ease of notation if A and B are similar, we will write A „ B.

Proposition 6.4. Let A and B be n ˆ n matrices. Then, A „ B if and only if B „ A.

Proof. If A „ B, then there is an invertible matrix P such that B “ PAP´1. This implies that
P´1BP “ A, so B „ A. The proof of the reverse direction is analogous.

Let’s check out a few examples!

Example 6.12. The matrices

„

1 2
0 1

ȷ

and

„

´3 2
´8 5

ȷ

are similar since

„

1 0
2 1

ȷ

1201

„

1 0
´2 1

ȷ

rs “

„

´3 2
´8 5

ȷ

Example 6.13. The matrices

„

1 2
0 1

ȷ

and

„

1 0
0 1

ȷ

are not similar. I leave it to you as an exercise

to check this.

There is a very nice test to see whether two matrices are similar:
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Proposition 6.5. Let A and B be two n ˆ n matrices.

1. If A „ B, then detpAq “ detpBq.

2. If A „ B, then A and B have the same characteristic polynomial.

Proof. First we prove part (a). If A „ B, then there is an invertible P such that PAP´1 “ B; thus,
detpAq “ detpP qdetpAqdetpP´1q “ detpPAP´1q “ detpBq.

For the proof of B, suppose that PAP´1 “ B. Then,

detpB ´ λIq “ detpPAP´1 ´ PλIP´1q “ detpP pA ´ λIqP´1q “ detpA ´ λIq.

Warning: If detpAq “ detpBq or A and B have the same characteristic equation, this does not imply

that A „ B. For example, as we have seen The matrices

„

1 2
0 1

ȷ

and

„

1 0
0 1

ȷ

are not similar, yet they have

the same characteristic polynomial and the same determinate.

6.3.1 Diagonalization

What is your favorite type of square matrix? I don’t know about you, but I think diagonal matrices are
pretty nice! For example:

Example 6.14. Let A “

„

α 0
0 β

ȷ

, where α and β are real numbers. Then At “

„

αt 0
0 βt

ȷ

, for all

t P N. For any other non-diagonal matrix, we may not have such a nice way to calculate it’s power.

Hopefully, the last example convinces you that diagonal matrices are computationally friendly; if not,
then the next proposition should!

Proposition 6.6. If D “

»

—

—

—

–

α1 0 0 ¨ ¨ ¨ 0
0 α2 0 ¨ ¨ ¨ 0

0 0
. . . 0

0 0 0 ¨ ¨ ¨αn

fi

ffi

ffi

ffi

fl

is a diagonal matrix, then

Dk “

»

—

—

—

–

αk
1 0 0 ¨ ¨ ¨ 0
0 αk

2 0 ¨ ¨ ¨ 0

0 0
. . . 0

0 0 0 ¨ ¨ ¨ αk
n

fi

ffi

ffi

ffi

fl

.

Now, we might ask, if a matrix that is similar to diagonal matrix can have its powers easily computed.
The answer is yes!
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Proposition 6.7. Let A „ D, where D is a diagonal matrix. Say, PDP´1 “ A. Then

Ak “ PDkP´1.

Proof. Since A “ PDP´1, we have

Ak “ pPDP´1qpPDP´1q ¨ ¨ ¨ pPDP´1q
l jh n

k´times

“ PDkP´1

Definition 6.6. We say that a matrix A is diagonalizable if it is similar to a diagonal matrix.

Proposition 6.8. An n ˆ n matrix A is diagonalizable if and only if it has n linear independent
eigenvectors.

Proof. Before proving this proposition, we observe that if P is an invertible matrix, A is a matrix,
and D is a diagonal matrix, then

AP “ A
“

v1 ¨ ¨ ¨ vn

‰

“
“

Av1 ¨ ¨ ¨ Avn

‰

, (6.1)

and

PD “ P

»

—

—

—

–

α1 0 0 ¨ ¨ ¨ 0
0 α2 0 ¨ ¨ ¨ 0

0 0
. . . 0

0 0 0 ¨ ¨ ¨ αn

fi

ffi

ffi

ffi

fl

“
“

α1v1 ¨ ¨ ¨ αnvn

‰

. (6.2)

Assume that A “ PDP´1. Then Equations 6.1 and 6.2 imply that Avi “ αivi for all i. Since
P is invertible, its columns must be linearly independent. Hence, the vi are linearly independent
eigenvectors.

Now, assume that A has n linearly indpendent eigenvectors, with

Av1 “ α1v1, . . . , Avn “ αnvn.

Set P “
“

v1 ¨ ¨ ¨ vn

‰

. Then, reversing Equations 6.1 and 6.2 and noting the previous string of
equations, we have that

A “ PDP´1.

So, A is diagonalizable.
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Proposition 6.9. If an n ˆ n matrix A has n eigenvalues, then A is diagonalizable.

Proof. This is a direct consequence of the previous theorem.

Lets talk about how to determine if a matrix is diagonalizable, and if it is how to find a similarity equation
for it, namely how to find the P matrix.

How to Determine if A Matrix is Diagonalizable

Algorithm 6.2. Let A be a matrix of size n. Here is how we determine if A is diagonalizable and
if it is, how to find P and diagonal matrix D, such that A “ PDP´1.

1. Find eigenvalues of A.

2. Find n linearly independent eigenvectors for A. If they do not exist, then A is not diagonalizable.
The way to go about this is to find a basis for each eigenspace, which is NullpA´ Iλqq, for each
eigenvalue λ.

3. Construct P by putting the vectors from step 2 into a matrix.

4. Construct D from the corresponding eigenvalues. I.e if the eigenspace of the eigenvalue λ has
dimension 2, then λ will occur twice in D.
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Example 6.15. We will determine if the following matrix is diagonalizable:

»

–

1 3 3
´3 ´5 ´3
3 3 1

fi

fl

Step 1: We find

“ detpA ´ λIq “ ´λ3 ´ 3λ2 ` 4 “ ´pλ ´ 1qpλ ` 2q2.

So, the eigenvalues of A are 1 and ´2.
Step 2: Since A is a matrix of size 3, we must find three linearly independent eigenvectors. If we
cannot, then A is not diagonalizable. To this end, we calculate each eigenspace. Let’s start with
E1pAq. Recall, E1pAq “ kerpA ´ Iq, so we need to row reduce

»

–

0 3 3 | 0
´3 ´6 ´3 | 0
3 3 0 | 0

fi

fl .

This matrix row reduces to

»

–

1 0 ´1 | 0
0 1 1 | 0
0 0 0 | 0

fi

fl .

From this we see that

kerpA ´ Iq “

$

&

%

s

»

–

1
´1
1

fi

fl | s P R

,

.

-

.

So, we pick v1 “

»

–

1
´1
1

fi

fl. This is as best as we can do for E1pAq since it is one dimensional.

Next, we find a basis for E2pAq. To this end

rA ` 2I | 0s “

»

–

3 3 3 | 0
´3 ´3 ´3 | 0
3 3 3 | 0

fi

fl

row reduces to

»

–

1 1 1 | 0
0 0 0 | 0
0 0 0 | 0

fi

fl .

Therefore,

kerpA ` 2Iq “

$

&

%

s

»

–

´1
1
0

fi

fl ` t

»

–

´1
0
1

fi

fl | s, t P R

,

.

-

.

Hence, v2 “

»

–

´1
1
0

fi

fl and v3 “

»

–

´1
0
1

fi

fl are linearly independent eigenvalues. Since v1 is associated

to another eigenvalue, v1,v2,v3 are linearly independent. Thus, as there are three of them, A is
diagonalizable!

Step 3: We set

P “
“

v1 v2 v3

‰

“

»

–

1 ´1 ´1
01 1 0
1 0 1

fi

fl

Step 4: We have

D “

»

–

1 0 0
0 ´2 0
0 0 ´2

fi

fl .

Note that ´2 occurs twice since two of the linearly independent eigenvectors come from ´2.

One can check that A “ PDP´1.
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Example 6.16. We will determine if the following matrix is diagonalizable

A “

„

1 1
0 1

ȷ

.

Step 1: The eigenvalues for A is 1.

Step 2: We find that the matrix A ´ I row reduces to

„

0 1
0 0

ȷ

. Therefore, nullitypA ´ Iq “

dimpE1pAqq “ 1. This is bad since as there are no other eigenvalues there are no more possibili-
ties for linearly independent eigenvectors besides the one corresponding to 1. Therefore, A is not
diagonalizable.
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